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This is a personal statement on the present state of understanding of coherent 
structures, in particular their spatial details and dynamical significance. The charac- 
teristic measures of coherent structures are discussed, emphasizing coherent 
vorticity as the crucial property. We present here a general scheme for educing 
structures in any transitional or fully turbulent flow. From smoothed vorticity maps 
in convenient flow planes, this scheme recognizes patterns of the same mode and 
parameter size, and then phase-aligns and ensemble-averages them to obtain 
coherent structure measures. The departure of individual realizations from the 
ensemble average denotes incoherent turbulence. This robust scheme has been used 
to educe structures from velocity data using a rake of hot wires as well as 
direct numerical simulations and can educe structures using newer measurement 
techniques such as digital image processing. Our recent studies of coherent 
structures in several free shear flows are briefly reviewed. Detailed data in circular 
and elliptic jets, mixing layers, and a plane wake reveal that incoherent turbulence 
is produced at the ‘saddles’ and then advected to the ‘centres’ of the structures. 
The mechanism of production of turbulence in shear layers is the stretching of longi- 
tudinal vortices or ‘ribs ’ which connect the predominantly spanwise ‘rolls ’ ; the ribs 
induce spanwise contortions of rolls and cause mixing and dissipation, mostly a t  
points where they connect with rolls. We also briefly discuss the role of coherent 
structures in aerodynamic noise generation and argue that the structure breakdown 
process, rather than vortex pairing, is the dominant mechanism of noise generation. 
The ‘ cut-and-connect ’ interaction of coherent structures is proposed as a specific 
mechanism of aerodynamic noise generation, and a simple analytical model of it 
shows that i t  can provide acceptable predictions of jet noise. The coherent-structures 
approach to turbulence, apart from explaining flow physics, has also enabled 
turbulence management via control of structure evolution and interactions. We also 
discuss some new ideas under investigation : in particular, helicity as a characteristic 
property of coherent structures. 
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1. Introduction 
1.1. Revolution one - coherent structures 

So profound has been the impact of coherent structures that virtually every 
turbulence researcher is pursuing them in one form or another. Coherent structures 
are the embodiment of our desire to find order in apparent disorder. The popularity 
of coherent structures should be evident from the fact that  the literature in this field 
runs into thousands of papers, and a healthy number of review papers (for example : 
Kline et al. 1967; Crow & Champagne 1971; Roshko 1976; Kovasznay 1977; Smith 
& Abbott 1978; Saffman 1980; Cantwell 1981; Lumley 1981; Coles 1981, 1985; 
Antonia 1981 ; Keffer 1982; Laufer 1983; Ho & Huerre 1984; Rogallo & Moin 1984) 
have been published. 

Large-scale organized transports were implicit in the mixing length and vorticity 
transport theories of Prandtl and Taylor as well as in the works of Wille, Townsend, 
Grant and others. Explicit recognition of the presence and role of organized structures 
was apparent in the works of Brown (1935), Anderson (1954), Bradshaw, Ferriss & 
Johnson (1964), Mollo-Christensen (1967) and others. However, the widespread 
occurrence and dominant role of coherent structures in turbulence phenomena have 
become clear only recently through the works of Kline, Hama, Klebanoff, Roshko, 
Crow, Coles, Browand, Kovasznay, Laufer, Kaplan, Brodkey, Willmarth and others. 
Coherent structures were evident in prior flow-visualization studies, especially in the 
transitional regions of shear flows, but escaped attention and emphasis because of the 
preoccupation with fully developed turbulent regions, where similarity scaling was 
expected to hold. Claims that coherent structures have brought about a redefinition 
of turbulence are clearly overstatements, even though some of the established notions 



Coherent structures and turbulence 305 

of turbulence are at variance with the findings of coherent-structures research and 
need to be modified or rationalized. Coherent structures have not only raised many 
more questions than they have answered, but also have injected new momentum and 
excitement into turbulence research. 

1.2. Revolution two - digital computer as a turbulence research tool 

A second revolution in turbulence research in recent years has been the incorporation 
of the digital computer as an integral (even interactive) component of the turbulence 
research arsenal. The computer is now commonly used not only as a versatile 
laboratory instrument (to measure various turbulence quantities) but also for 
experiment control and acquisition (including conditional sampling) and analysis 
(including pattern recognition) of data. Moreover, with the advent of supercomputers, 
direct numerical simulations of turbulent flows via time-evolving solutions of the 
complete Navier-Stokes equations in three-dimensional space are now possible, a t  
least a t  moderate Reynolds numbers (e.g. Moin & Kim 1985). 

Both computer experiments (i.e. simulations) and laboratory experiments have 
their limitations. Simulation allows systematic variations as well as precise control 
of initial and boundary conditions and thus allows studies of their effects on the flow 
field. This is not always possible in laboratory experiments. Via numerical simulation 
one can 'measure ' quantities such as vorticity, enstrophy, dissipation, pressure, etc. 
which are impossible to  measure accurately in the laboratory. Simultaneous 
measurement of the flow-field evolution, like those computed numerically, will be 
prohibitively expensive and will be subject to unacceptable errors due to probe 
interference. Avoidance of such interference forces the use of Taylor's hypothesis, the 
validity of which to turbulent shear flows is in doubt (Lin 1953; Fisher & Davies 
1964; Lumley 1965; Heskestad 1965; Champagne 1978). 

Two outstanding constraints of numerical simulation are the Reynolds number of 
the flow and the number of repeats or the duration of flow that can be computed. 
The first is a technological limit, the second is economic. The Reynolds number of 
flows that can be computed directly is rather small in comparison with practical or 
even laboratory flows. Thus fine scales of practical turbulent flows cannot be resolved. 
Also, the flow time that can be economically computed is far too short. For eduction 
of coherent structures, the number of realizations required is large. Also, in situations 
such as phase space analysis of flow variables, extremely long time records are 
required. Adequate computation time for either purpose will be prohibitively 
expensive. 

Clearly, computer and laboratory experiments play complementary roles (e.g. 
Metcalfe et al. 1986a), and computer experiments cannot yet resolve details of flows 
at  practical Reynolds numbers and thus cannot replace laboratory experiments. 
Laboratory experimentation will continue to be important not only for understanding 
the physics of unsteady, vortex, or turbulent flows, but also for 'calibration' of 
numerical codes. 

2. The nature of coherent structures 
2.1. Earlier approaches -$ow visualization 

Virtually all coherent structure studies have been based on flow visualization only. 
But it has its limitations. The flow marker (such as dye or smoke) is typically 
introduced a t  the point of flow initiation. Sufficiently far downstream, in a turbulent 
flow, the marker outline has little to do with the boundary of the turbulent domain. 
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First, the markers are smeared rapidly so that the local flow dynamics cannot be 
clearly discerned. The markers reflect the integration of the history of the motions 
they have undergone since their injection in the flow. Also, because of the rapid (i.e. 
turbulent) diffusion of the markers, their concentration as well as the sharpness of 
their fronts decreases with increasing evolution time or distance from the point of 
injection. Clearer perception of the local flow dynamics can be obtained if the markers 
can be introduced locally. That is why hydrogen-bubble or smoke wires are often 
preferable. 

Even in a laminar flow, marker boundaries can be largely different from vortex 
boundaries. One example is that of the laminar wake of a cylinder a t  low Reynolds 
numbers (Re, x 140). Many investigators have been misled by the long survival of 
smoke or dye markers introduced at the cylinder, and they have surmised indefinite 
survival of shed laminar vortices. The molecular diffusivities of vorticity and markers 
being very different (i.e. the Schmidt number being large), vorticity should be 
expected to have diffused away from the smoke-marked fluid. Also, Taneda (1959) 
has shown that the initial vortices undergo breakdown and decay by about x/d = 80 
before a new vortex structure is formed, perhaps as an instability of the local flow 
(presumably not of the mean wake profile). The misinterpretation of smoke lumps 
in cylinder wakes and wake instability have been re-examined recently by Cimbala 
(1984). Another example of the contrast between marker pictures and the organized 
structures is evident from jet flow pictures of Dimotakis, Lye & Papantoniou (1982). 
Even though pictures showing markers splintered into innumerable tiny domains 
suggest that  there are no large-scale coherent structures in the far field, structures 
scaling on the far-field jet diameter do occur ; these structures have been educed and 
their dynamics studied in some detail by Tso (discussed in $3.5.2) .  

Clearly, flow visualization is extremely useful and should be tried whenever 
possible, but only as a supplement to quantitative measurements. Digital image 
processing is a welcome blending of both visualization and simultaneous measurement 
over a flow domain, and is emerging as a powerful research tool. Also, most 
visualizations of coherent structures have been carried out a t  low Reynolds numbers 
- typically motivated by the ease of interpretation (for example, Reynolds & 
Bouchard 1981; Perry & Chong 1982; Perry & Tan 1984). However, one must not 
assume the same phenomena to occur at higher Reynolds numbers as the flow physics 
can be, and often are, highly Reynolds-number-dependent, except perhaps in the very 
high Reynolds-number range. 

What is needed is a description of a coherent structure in three-dimensional space, 
as the structures are in general three-dimensional. While this can be done easily for 
structures educed from direct numerical simulations, it  will be virtually impossible 
to do so experimentally because of constraints of measurement technology - 
constraints due to the limited number of sensors forced by cost, space and computer 
(memory size, and digitization and data transfer rates). Laboratory measurements 
will thus miss the flow physics, which can be captured only in a three-dimensional 
eduction. 

2.2. Dejinition and characteristics of coherent structures 

There is as yet no consensus in what is meant by coherent structures. Most researchers 
have seen pictures of structures in a mixing layer, first emphasized by Brown & 
Roshko (1974). Granted, there is some superficial consensus on qualitative aspects of 
the Brown-Roshko structure, but there is very little regarding structures in other 
flows. Even in the plane mixing layer, the structure is far more complicated and 
three-dimensional (Metcalfe et al. 1 .986~)  than indicated by the Brown-Roshko and 
subsequent studies (e.g. Browand & Troutt 1985). 
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In principle, concepts like coherent structures are best left implicit; efforts to 
provide a precise definition may seem pedantic. However, the need to measure 
coherent structures and assess their dynamical significance motivated me to construct 
a definition of coherent structures. A coherent structure i s  a connected turbulent Jluid 
mass with instantaneously phase-correlated vorticity over its spatial extent (see Hussain 
1980, 1981, 1 9 8 3 ~ ) .  That is, underlying the random, three-dimensional vorticity that 
characterizes turbulence, there is a component of large-scale vorticity which is 
instantaneously coherent over the spatial extent of a coherent structure. We choose 
to designate the instantaneously space- and phase-correlated vorticity as coherent 
vorticity. Thus, coherent vorticity is the primary identifier of coherent structures, 
which have distinct boundaries and independent territories. The identification with 
fluid mass in the definition is not intended to mean that structure evolution is by 
advection alone, as structure size (and also shape) changes by entrainment, pairing, 
tearing and crosslinking. 

As a consequence of this definition, a turbulent shear flow can be decomposed into 
coherent structures and incoherent turbulence. Implicit in the definition is the 
operation of ensemble averaging to identify a coherent structure. The ensemble 
average of appropriately phase-aligned realizations containing similar organized 
events is a coherent structure; whatever is not included in the ensemble average is 
incoherent turbulence. As should be clear later on, this separation of the total field 
is conceptually precise, but operationally non-unique : incoherent turbulence does 
not consist of only fine-scale turbulence, as is generally presumed, but may contain 
large-scale irrotational (perhaps even vortical but irrelevant) motions. The interaction 
between coherent structures and incoherent turbulence is the most critical and least 
understood aspect of turbulent shear flows. This coupling appears to  be rather 
different from the classical notion of cascade; even considering the large and fine 
scales, they are not decoupled as widely presumed. The coupling can be intricate and 
of different kinds; see 94.3 for an example. 

The purpose of eduction is to separate from instantaneous flow fields the coherent 
and incoherent parts. We use phase average to denote phase-aligned ensemble average. 
This is an average of successive structures at the same phase or age, but not an 
average over all phases; the latter would be meaningless. Thus, the phase average 
of structures of the same mode and parameter size is the coherent structure, and the 
departure of each instantaneous realization from the phase average denotes incoherent 
turbulence. 

In turbulent free shear flows, which have been the focus of most studies of coherent 
structures so far, by coherent structures we mean those which are large-scale, even 
when this adjective is not included. This is because they are dynamically more 
significant than other structures. Turbulence a t  the Kolmogorov scale 7 is obviously 
the most coherent as significant vorticity (and of course, velocity or pressure) 
variations cannot occur over this scale; turbulence at this scale is not dynamically 
dominant. By coherent structures, we mean those of size comparable to the transverse 
lengthscale 1 of the shear flow. Thus the Reynolds number vl /v  is large (as compared 
to y / v  x 1 for the Kolmogorov scale where v is a measure of the turbulence velocity), 
and hence the coherent structure dynamics are inviscid, the viscous effect being 
extremely remote (only via the smallest scales around 7). Intermediate-scale coherent 
motions such as ‘ribs ’, ‘hairpins ’, ‘typical eddies ’ also occur. (Their cross-sectional 
size is usually of the order of the Taylor microscale h.) To be consistent, we will call 
them coherent substructures. For example, in wall-bounded flows, these substructures 
can be dynamically significant and are worthy of eduction (say, via the eduction 
scheme discussed in 93.4) and detailed investigation. 
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. . 
FIQ RE 1. An example of a coherent structure in a plane mixing layer. ( a )  Cc erent vorticity 
<8) contours and saddle A and centre B;  ( b )  approximate contours of other coherent structure 
properties: coherent intermittency (7) ; incoherent turbulence intensities (u$, ($)$; incoherent 
Reynolds stress - (u, v,) ; coherent strain rate (S) ; coherent production ( P ) .  

Figure l(a) shows an example of the spanwise cut of a coherent structure, in 
particular in the plane mixing layer. The outer contour of coherent vorticity (a )  
denotes the structure boundary ; this boundary, but not the structure strength, will, 
of course, depend on the coherent vorticity threshold used. Note that there are two 
critical points : the saddle (A) characterized by negligible spanwise coherent vorticity, 
and the centre (B) characterized by peak spanwise coherent vorticity. Also shown 
qualitatively are contours of coherent strain rate (S) ; incoherent turbulence 
intensities (u:):, (w$ ; incoherent Reynolds stress - (ur q.) ; coherent intermittency 
( y ) ;  and coherent production ( P )  (figure 16). Contours of (S), -(urvr), and ( P )  
are similar; thus their differences are not emphasized here. 

2.3. Quantitative approaches 
For quantitative aspects of coherent structures, there must be a clear delineation of 
an operational procedure for their measurement. Two separate ways of analysing 
coherent structures have been followed : triple and double decompositions, mentioned 
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briefly in Appendix A and discussed by Hussain ( 1 9 8 3 ~ ) .  Turbulent flows consist of 
both coherent and incoherent motions at various scales. To encompass the whole 
range of motions realistically, the flow field should perhaps be decomposed into a 
mean, and a hierarchy of both coherent and incoherent motions of various scales. 
Accounting for all these motions separately will be cumbersome experimentally. 
Analytically, such decomposition will merely compound the closure problem. Thus 
we chose the simpler decompositions, which enable us to focus on dynamically 
significant events. Clearly, ‘ mean ’ flow will take on different meanings under different 
decompositions. This is why arguments based on ‘ mean flow ’ or ‘mean shear ’ should 
be viewed as tentative; they are also mostly devoid of instantaneous flow physics. 

The process of measuring the properties of a structure over its spatial extent is 
now popularly known as eduction. The eduction process is based on a number of 
conceptual arguments and operational procedures ; we will first discuss the general 
concepts, and then explain our eduction scheme and its application to a few flows. 

2.3.1. Preferred mode 

Eduction implies ensemble averaging a large number of ‘similar’ structures or 
organized events and is meaningful only for a ‘preferred’ mode. By mode we mean 
the physical configuration (e.g. roller, toroidal, helical, bihelical, hairpin, etc.). In  
general, vortical structures have a large dispersion in the characteristic parameters 
such as shape, size, strength, orientation, convection velocity, etc. A point in this 
parameter space, i.e. a set of particular values of the structure parameters, denotes 
a parameter size. Now if in the parameter space the (multi-dimensional) probability 
density function has a few isolated peaks, these are called preferred modes. Of all 
possible structures in a turbulent shear flow, i t  may suffice to  study these modes alone, 
as they should dominate the flow physics. Typically, only a few peaks are expected 
to occur. If one peak is much higher than the others we call i t  the dominant preferred 
mode, or simply the preferred mode - the mode which deserves detailed investigation 
first. 

Implicit in the concept of coherent structures is the concept of preferred mode(s). 
In  fact, the coherent-structures approach to turbulence is helpful only if preferred 
modes occur. Some researchers believe that a turbulent shear flow can have numerous 
or even an infinite variety of coherent structures. If that is true the coherent 
structures concept is useless. Eduction of a variety of coherent structures will be 
virtually impossible not only on account of the total effort involved, but also because 
a long time will be required to capture a sufficient number of similar structures to 
obtain a true ensemble average for each subclass of structures. One must also state 
the probability of occurrence and relative significance of each structure. Furthermore, 
even if all details of all coherent structures were known, one would need to have 
recourse to an elaborate statistical approach in order to incorporate them all into a 
theory. It is not obvious that such a theory will be simple or even useful. 

Thus the key problem in eduction is classifying structures into different subclasses, 
capturing structures of one subclass a t  a time, phase-aligning them and then 
obtaining ensemble averages. This is a painstaking task to which no simplification 
seems to be available. One can easily be tempted to capture a single realization and 
then spatially smooth it. We philosophically disagree with this approach, as coherent 
structures are defined as statistical entities, and as there is no way to know a priori 
how much of the flow variables are coherent and how much incoherent; also, one has 
no way of knowing if the captured event is typical or ‘freak’. There are objections 
to the procedure too. Such smoothing would be meaningful only if the organized 
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motions are of one mode and size (i.e. all structures are identical) and if the incoherent 
turbulence is truly fine-scale; as we have discussed, this is not necessarily so. Even 
if this were true, spatial smoothing to obtain a coherent structure from a single 
realization does not seem to be reasonable because: there is no test for convergence 
of smoothing via a spatial filter; since the filter spatial size must vary over the 
structure, there is no way of determining the spatial variation of the filter size; and 
such spatial filtering removes sharp fronts or gradients which will be retained in 
properly phase-aligned ensemble averaging. 

2 .4 .  Further implications of coherent structure dejhition 

Quantitative studies of coherent structures are very few. Of these, most involve 
correlation of velocity, pressure or intermittency to identify coherent structures. We 
have explained why these correlations cannot unambiguously identify coherent 
structures (Hussain 1983a). The intermittency signal that detects turbulent/non- 
turbulent interface can be used to detect coherent structures only qualitatively (and 
only in flows which are bounded by irrotational ambient flows) provided that 
incoherent turbulence can be assumed to be totally embedded within coherent 
structures. Such is not true in general ; see the difference between contours of coherent 
vorticity and intermittency in figure 1 ( b ) .  An intermittency signal will be clearly 
useless for educing coherent structures in turbulent pipe or channel flows, in the wall 
region of turbulent boundary layers, or even in fully developed jets and wakes. 
Another limitation of pressure or velocity correlation is that it extends far beyond 
the structure boundary (defined by coherent vorticity). Michalke (private communi- 
cation, 1983) raises an interesting point of view by claiming that vorticity is the 
‘skeleton’ of a coherent structure and the induced flow field denotes its ‘body ’. We 
insist on delimiting the boundary on the basis of coherent vorticity. 

Coherent structures play important roles in transports of heat, mass and momen- 
tum (hence combustion, chemical reaction and drag) as well as aerodynamic noise 
generation, but they themselves are not necessarily highly energetic. This statement 
needs clarification. In  transitional flows, coherent structures are indeed energetic and 
are dominant in turbulence phenomena. In  fully turbulent flows, they share these 
roles with incoherent turbulence, the contributions of both to turbulence phenomena 
being comparable. 

Coherent structures are spatially non-overlapping ; each has its own territory. Thus 
cascade is not a relevant concept for coherent structure interactions. Cascade may 
still be a useful concept for energy exchange between different scales within in- 
coherent turbulence or even between coherent structures and incoherent turbulence. 
The interactions of coherent structures are intrinsically nonlinear, typically 
involving pairing or tearing. Pairing, which suggests amalgamation of two structures 
(figure 2a)  has been discussed at length by Winant & Browand (1974) and Hussain 
& Zaman (1980). I n  addition to complete pairing just mentioned, there can be 
fractional pairing (figure 2 b )  or partial pairing (figure 2 c ) ,  discussed by Hussain & 
Clark (1981). Tearing (figure 2 4  occurs when a structure is torn into two or more 
parts (see Moore & Saffman 1975). Unlike cascade, when ‘eddies’ of different scales 
superimposed on the same space are presumed to exist in equilibrium (Tennekes & 
Lumley 1974), interactions of coherent structures always produce newer structures 
of different scales. 

The definition of coherent structures in terms of coherent vorticity has been the 
focus of some controversy, but now appears to have gradually gained wide 
acceptance. However, even today, most other studies of coherent structures neither 
address coherent vorticity nor use it to educe coherent structures. 
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(b) (d (4 
FIQURE 2. Coherent structure interactions in a mixing layer: (a )  schematic of vortex pairing 
process; ( b )  schematic of fractional pairing process; ( e )  schematic of partial pairing process; 
(d )  schematic of tearing process. 

We re-emphasize that a coherent structure by our definition is a statistical entity 
resulting from the phase-aligned ensemble average of a large number of realizations 
(i.e. data records) containing the structure. That is, i t  is not necessarily observable 
instantaneously or individually, as i t  is buried in a realization or picture, especially 
in a fully turbulent flow; i t  is the (underlying) common denominator of many 
realizations containing the structures of the same age and mode. Thus one cannot 
visualize a coherent structure in a turbulent flow. One can recognize large-scale 
motions, which should perhaps be called flow events or turbulent 'eddy ' structures, 
or simply structures, even though they are loosely called coherent structures by 
many. 

11 F L M  173 
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2.5. Expectations of coherent structures 

Most turbulence researchers have formed opinions about what coherent structures 
are, how they are formed, and how important they are. Hard facts supporting these 
expectations are rare. Some facets of these are discussed here. 

2.5.1. Formation of coherent structures 
The formation of (transitional) coherent structures as a result of instability of 

initially laminar free shear layers or boundary layers is much better understood than 
their formation in fully turbulent states of shear flows. It seems obvious that these 
structures form as a result of local instabilities of instantaneous turbulent flows. A 
number of investigators (Gaster, Wygnanski, Goldstein, Tam and Cimbala, among 
others) have attempted to explain structure formation in fully turbulent shear flows 
via linear instability of the time-mean profile. While it is impressive that some of the 
theoretically predicted results (for example, lower-order measures of fluctuating 
quantities) agree well with experimental data (Wygnanski 1985). I find those an 
insufficient basis for accepting this approach, and have some strong conceptual 
objections. First, the basic turbulent flow whose instability is sought is itself highly 
unsteady and mostly consists of nonlinearly interacting large-scale energetic motions. 
The instability would seem to be a result of these interactions, which are intrinsically 
nonlinear. Secondly, an instability study of the time-mean profile would be reasonable 
if the timescales and lengthscales of turbulence were much smaller than those of the 
instability wave. But the scales of the instantaneous turbulent shear flow are in the 
same range as those of the instability wave investigated. Thus, it does not seem 
appropriate to talk about instability of the mean profile if the instability wave never 
‘sees ’ the mean profile, or if the average of the flow encountered by a wave during 
its evolution departs noticeably from the mean profile. Thirdly, it is yet to be shown 
that to the leading order, the instability of an instantaneous profile is that of the 
time-mean profile. Finally, even if the profile shape were to remain the same but 
change in magnitude with time, the instability of a given profile shape when it is 
unsteady can be quite different from that when i t  is steady (Davis 1976). From these 
considerations, it  seems clear that  a linear instability study of a steady mean profile 
cannot be relevant to the formation of coherent structures in a fully turbulent shear 
flow. Newer approaches, perhaps a dynamic stability study of the time-dependent 
flow, may have to be considered. 

2.5.2. Waves, solitons, strange attractors 

Many (e.g. Tam & Morris 1985) treat coherent structures as waves. There are some 
who suggest that coherent structures could be viewed as solitons (e.g. Fiedler et al. 
1980). Since we associate these structures with turbulent fluid mass, it  would be 
inappropriate to view them as waves. Further, since new structures of different scales 
always result from interactions of coherent structures, they cannot be regarded as 
solitons. Is the dynamics of a coherent structure described by a strange attractor 1 
Transition in closed flow systems such as Taylor-Couette flow and box convection 
has shown strange-attractor behaviour (Gollub & Benson 1980 : Brandstater et al. 
1983 ; Sano & Sawada 1983), but so far no one has been able to show strange-attractor 
behaviour in open flows. [Sreenivasan’s (private communication, 1985) claim, of a 
chaotic transition sequence in the cylinder wake, has been brought into question by 
the recent work of Van Atta & Gharib (private communication), who have shown 
the apparently chaotic transition frequencies to be related to cylinder vibration 
modes alone.] While turbulent flows (or for that  matter, all flows) have infinite degrees 
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of freedom, the motion of coherent structures, being large-scale and organized, is 
likely to be low-dimensional. Also, the Navier-Stokes equation being quadratically 
nonlinear, like other nonlinear equations depicting strange-attractor-type behaviour, 
can be expected to have solutions with strange-attractor behaviour (Benjamin 
private communication, 1985). One can thus expect the time-evolution of a coherent 
structure to behave as a strange attractor in phase space. Experimental test of this 
expectation is yet to be made and must await clearer understanding of spatial chaos. 

2.5.3. Vortex dyna.wbics 
The attractiveness of coherent vorticity as the identifier of coherent structures lies 

not only in our intuitive perception of an organized motion in a. turbulent flow being 
a vortical entity, but also in the general expectation that structure evolution and 
interaction can be explained via the fairly well-developed theory of vortex dynamics. 
We need to assess these expectations. Turbulent flow structures are of complex shape, 
and their interactions are affected by viscosity. On the other hand, most of our 
notions about vortex dynamics, vortex interactions, and topology of vortical flows 
(Saffman & Baker 1979; Hunt 1973, 1985; Perry & Chong 1982; Moffatt 1985) are 
based on Euler flows and vortex filaments of simple geometries (Widnall, Bliss & Tsai 
1974; Saffman 1978 ; Takaki & Hussain 1984). Apart from the complexity of vorticity 
measurements in a random three-dimensional structure, interpretation of coherent 
structures via vortex dynamics is difficult. Even if three-dimensionality and viscous 
effects are ignored, there are problems. For example, Biot-Savart’s law applies to  
instantaneous motions of line (or slender) vortices, and it cannot be applied strictly 
to the coherent vorticity field to explain the motion of an ‘ensemble-averaged vortex ’ 
in a turbulent flow. Similarly, the evolution of coherent vorticity cannot be derived 
by applying the vorticity equation to the coherent flow field alone. In  fact, i t  appears 
that the principal contribution to coherent vorticity comes from the incoherent field; 
see Appendix B. 

2.5.4. Other expectations 
Many researchers expect coherent structure to be : (i) quasi-deterministic, (ii) 

dominant in turbulence phenomena, (iii) long-lived, and (iv) quasi-periodic. It is 
obvious why these attributes would make coherent structures highly attractive 
modules of shear flow turbulence. Our experience with coherent structures in different 
flows enables us to make specific comments about these expectations. Coherent 
structures are not necessarily long-lived. Their survival distance decreases with 
increasing Reynolds number. The survival time is typically of the order of the 
structure turnover time (Hussain & Clark 1981). This observation seems a t  variance 
also with the expectation that coherent structures should be characterized by high 
helicity, which in turn implies relatively long lifetimes (discussed in $4.4). Except 
in the case of flow resonance or periodic excitation, coherent structures are neither 
periodic nor quasi-periodic. In  some transitional flows such as jets and shear layers, 
the roll-up of new structures is triggered by feedback from previously formed 
structures downstream. Thus, quasi-periodicity in transitional regions is not un- 
expected. Similar feedback is also a t  play in sustained pairings at nearly the same 
location in near fields of jets and shear layers. I n  fully developed turbulent shear flows, 
there is no reason for the structures or their interactions to be even quasi-periodic. 
However, it has been found that structures in fully turbulent states occur periodically 
in patches which, of course, occur randomly (Townsend 1979; Mumford 1982, 1983; 
Tso 1983). No explanation for this has been given or is apparent. 

These claims or expectations about coherent structures have profound implications 

11-2 
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and clearly deserve careful scrutiny. We have addressed these claims in our studies 
of coherent structures in a number of free shear flows. These efforts, though highly 
painstaking and time-consuming, have proved worthwhile. Our results show that 
some of the claims about coherent structures need to be moderated. I n  particular, 
a t  least in fully turbulent flows, incoherent turbulence is comparable in importance 
to coherent structures, and its role in turbulence phenomena cannot be ignored; see 
also Hussain (1983a). 

The coherent-structures approach is not a passing phase of the ‘rise and fall of ideas 
in turbulence’ (Liepmann 1979), but is here to stay, p r h a p s  with decreased fanfare 
in the future, which is to be expected. Since i t  now appears that  coherent structures 
are characteristic features of (perhaps all) turbulent shear flows, understanding of 
these structures is very important. This understanding should cover the descriptions 
of the topography of the structures as well as their dynamical significance, including 
the distributions of structure properties over the spatial extent of the structures. In 
addition, a number of technological pay-offs may result from manipulation and 
control of coherent structures, the success of such efforts being dependent on the 
understanding of the physics of coherent structures. Entrainment, mixing, heat 
transfer, combustion, chemical reaction, drag and aerodynamic noise generation are 
fields in which better understanding of coherent structures should produce substantial 
technological benefits. Some of these aspects will be addressed in $5. 

3. Eduction of coherent structures 
3.1. Eduction philosophy 

The eduction process in principle consists of the following steps: (i) deduce a feature 
of a relevant signal which can uniquely denote passing structures; (ii) select a mode 
(typically the preferred mode) and a parameter size, and accept signals containing 
structures of the chosen mode and parameter size; (iii) phase-align (i.e. align in both 
space and time (or age)) the accepted realizations and obtain their ensemble average 
(i.e. phase average) ; (iv) refine the phase average by further discarding the undesirable 
realizations ; and (v) extract the departure of each finally accepted instantaneous re- 
alization from the final phase average and compute incoherent turbulence measures. 

Since mode identification can only follow structure eduction, which in turn must 
depend on the choice of the mode and parameter size, eduction of coherent structures 
in fully turbulent flows is intrinsically iterative. Even after a mode and a parameter 
size have been selected through some iteration, further iteration via refinement (step 
(iv)) is necessary. It should be obvious from these steps that eduction of coherent 
structures is a sophisticated art  depending on the imagination (hence prejudice !) of 
the researcher. This is a well-known dilemma: prejudice which can produce poten- 
tially biased or misleading results is also necessary for the success in the eduction 
of coherent structures in fully turbulent shear flows. Of course, the researcher must 
ensure that the final phase-averaged structure is based on an adequate number of 
realizations, and that the eduction process converges to the appropriate preferred 
mode and not to a freak mode. 

3.1 . 1 . Earlier eduction schemes 
Coherent structures may vary from flow to flow. A flow may have a few preferred 

modes. I n  some cases, the same flow may have different preferred modes in different 
regions. For example, the preferred mode in the axisymmetric jet is toroidal in the 
near field, but appears to be helical in the far field. When a unique preferred mode 
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exists, structure eduction can be simplified by exciting the flow a t  that mode (if such 
excitation is possible) and educing the structure with a single (cross-wire) probe using 
phase-locked measurements. Some early studies utilized the periodicity of the 
structures for their eduction by a single sensor. For example, controlled sinusoidal 
excitation was used to educe coherent structures a t  different phases during pairing 
(Hussain & Zaman 1980) and to educe the preferred mode structure (Hussain & 
Zaman 1981) in the axisymmetric jet near field. The near periodicity of tht; 
vortex-shedding process was utilized by Cantwell & Coles (1983) to educe the 
structure in the near-turbul-:it wake of a circular cylinder. 

It is necessary to emphasize that in the case of structure evolution in a turbulent 
environment, there is jitter both in the initiation of successive structures and in the 
structure trajectory or evolution. In  order to reduce both jitters, the conditional 
sampling for eduction should be triggered not by the excitation signal or a signal 
denoting structure initiation, but by a local flow signal capturing footprints of 
structures a t  the measurement station. Hussain & Zaman (1980, 1981) triggered the 
sampling on the jet centreline velocity signal a t  the measurement station. On the 
other hand, Cantwell & Coles (1983) triggered the sampling of cylinder wake 
structures on a pressure signal from the shedding cylinder; this removed the initiation 
jitter but not the structure evolution jitter. For this reason, their data must have 
been significantly affected by smearing, which increases with increasing downstream 
distance from the structure initiation point. 

Such smearing can be removed easily if the captured structure signatures are 
appropriately aligned with respect to each other before the ensemble average is 
computed. In a turbulent environment, iterative cross-correlation of each realization 
(i.e. signal of a flow variable) with an ensemble average seems to be the obvious choice 
for alignment of successive realizations. An example is the organized turbulent 
structure (such as a boundary-layer spot or a free shear-layer spot) initiated via 
suction or spark and educed further downstream (Zilberman, Wygnanski & Kaplan 
1977; Cantwell, Coles & Dimotakis 1978; Sokolov et al. 1980). 

3.1.2. Excited us. natural structures 

The relevance of an excited structure to natural or unexcited structures has been 
questioned often. In  reality, all flows are excited, as disturbance-free flow is 
impossible to produce (Hussain 1980). Thus a discussion about natural and excited 
flows is really about structures produced by uncontrolled and controlled excitations. 
When the excitation amplitude is small (i.e. in the linear range), an arbitrary 
broadband disturbance can trigger the formation of only the most unstable mode, 
the so-called natural structures. The evolution of an excited structure cannot differ 
largely from that of a ‘natural’ structure in the same configuration, because the 
governing equation and boundary conditions are the same. Excitation thus merely 
paces the initiation of the natural structures a t  periodic intervals. Our earlier claim 
that small-amplitude excitation a t  the preferred mode produced only natural 
structures was tested and validated : the topographical details of structures for 
excited and unexcited jets were found to be nearly identical when the excitation 
amplitude is in the linear range. (The unexcited structure was educed using the 
generic eduction scheme discussed in $ 3.4 and compared with the excited structure 
educed by phase-locked measurements.) When the excitation amplitude was large, 
the structures were different, as is expected (Zaman & Hussain 1984). Depending on 
its frequency and amplitude, an excitation can significantly alter structure inter- 
actions; such interactions are of both scientific and technological interest (see $5). In 
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the following, we briefly review some examples of eduction under controlled 
excitation, not only to demonstrate the success of eduction, but also to present some 
structure data which will be discussed later (see $4.3). Lack of space prevents us from 
dwelling on the specific details of the flow physics. 

A .  K. M .  Fade Hussain 

3.2. Examples of eduction using controlled excitation 
3.2.1. Circular jet 

Two examples of coherent-structure eduction using controlled excitation are those 
of stable vortex pairing and preferred modes in the axisymmetric jet. Both studies 
involved excitation a t  2 %  of the exit velocity in a low-speed air-flow facility 
consisting of two settling chambers in series. Plane-wave excitation of the jet was 
introduced by inducing organ-pipe resonance of the settling chambers with the help 
of a loudspeaker attached to the first settling chamber. Measurements a t  the nozzle 
exit confirmed axisymmetry of the mean and turbulent flow fields, and spectra 
showed no strong residual frequency component. This ensured that the flow was 
clean; the exit broadband total turbulence level was less than 0.001 ; the previously 
reported value of turbulence level was higher because of the inclusion of linearizer 
noise. It should be emphasized that whether a jet flow can be characterized as ‘clean’ 
or not depends more on the presence of sharp spectral peaks than on the r.m.s. 
fluctuation level in the exit-plane velocity signal. That is, distinguishable sharp 
spectral peaks even a t  a low free-stream turbulence level may suggest a more 
‘unclean ’ flow than the case of higher free-stream turbulence level without any strong 
spectral peak. In  either case, it is the amplitude of the spectrum in the range of 
unstable frequencies, rather than the total r.m.5. value, which should be of concern. 
Jet  studies should report the initial condition : the mean and turbulence character- 
istics of the exit boundary layers and, especially, the free-stream turbulence 
spectrum. The importance of the initial conditions in the evolution of jets and shear 
layers has been emphasized before (Bradshaw 1966; Foss 1977; Hussain 1980). 

Excitation at St,( = f D /  Ue)  = 0.85 produced stable vortex pairing, i.e. successive 
pairings always occurred at the same spatial station a t  regular intervals, thus 
allowing eduction via phase-locked measurements ; fp  is the excitation frequency, U, 
is the jet exit velocity and D is the jet diameter. The acceptance of successive events 
was triggered by the periodic ‘signature ’ of the event itself, derived from the velocity 
signal on the jet centreline a t  the measurement point. Data (figures 3a-g) were taken 
in a 7.6 em air jet at the Reynolds number of 3.2 x lo4 and a t  the instant when pairing 
occurred in the jet column mode a t  x w 1.750. Note that an earlier phase of the 
sLructure during roll-up and two later stages after pairing were also captured. Figures 
3 (a-f) show the contours of coherent spanwise vorticity, coherent Reynolds stress, 
incoherent Reynolds stress, incoherent turbulence intensities, and coherent produc- 
tion of incoherent turbulence. The structure details have been discussed by Hussain 
& Zaman (1980). Figure 3 (9)  shows the time-average production and will be discussed 
in $4.2. 

The preferred mode of the axisymmetric jet excited a t  St, = 0.3 a t  an excitation 
amplitude u;/Ue = 2 %, was studied over a range of Reynolds number and initial 
condition (i.e. laminar or turbulent exit boundary layer). Figures 4(a-e) show the 
contours of coherent azimuthal vorticity, incoherent turbulence intensities and 
Reynolds stress, and coherent production for the axisymmetric jet preferred mode. 
These data are from a 7.62 em tripped jet a t  a Reynolds number of Re, = 110000. 
The data are essentially the same for a wide range of the Reynolds number and initial 
condition and have been discussed by Hussain & Zaman (1981). The implications of 
these data are discussed in $4.3. 
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3.2.2. Excited elliptic j e t  

Stable pairing and preferred modes of elliptic jets were educed following the same 
excitation and eduction scheme used for circular jets. For excitation effects on elliptic 
jets see $5.2.  Figures 5 ( a ,  b) show the contours of vorticity and production for the 
preferred mode coherent structure in the two planes of symmetry. These data were 
taken in a 2 :  1 jet a t  the exit speed U, = 10 ms-l corresponding to  the jet Reynolds 
number of ReD, = 3.5 x lo5  (based on the effective diameter D, defined in $5.2) .  I n  
spite of the differences between the circular and elliptic jets, both in time-mean and 
instantaneous flow dynamics, there is a great deal of similarity between the contours 
of structure properties in the two flows. 

FIGURE 3 (a-c). For caption see p. 319. 
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FIGURE 3 ( d , e ) .  For caption see facing page. 

3.3. Eduction in ful ly  turbulent flows 
Early eduction efforts were based on a local detection signal. Browand &, Weidman 
(1976) employed longitudinal velocity signals from the edges of a mixing layer to 
extract the vorticity contours for a pairing stage of the structures. A reference 
velocity signal u, from the high-speed edge of the mixing layer has been used for 
triggering structure eduction by Zaman & Hussain (1  984) in a turbulent axisymmetric 
mixing layer, and by Hussain & Zaman (1985) in a plane mixing layer originating 
from a fully turbulent boundary layer. Using flow visualization in the near field of 
a circular jet, peaks in u, were related to passages of vortical structures. The eduction 
scheme was first developed in the turbulent axisymmetric mixing layer after 
considering various options, and was found to  be the optimum for the plane mixing 
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FIGURE 3. Coherent structures in the near field of an axisymmetric jet a t  the instant of pairing 
in the jet column mode at z x 1 .750:  (a) contours of coherent spanwise vorticity ( 5 2 ) ;  numbers 
denote vorticity non-dimensionalized by the excitation frequency fp ; (b )  contours of coherent 
Reynolds stress (u, v,) /Uz;  ( c )  contours of incoherent Reynolds stress - (u, v,)/%; (d) contours 
of longitudinal incoherent turbulence intensity (u:):/ U ,  ; ( e )  contours of transverse incoherent 
turbulence intensity ( v$ /Ue;  (f) contours of coherent shear production ( P , ) / (  f, UE); (9) contours 
of time-averaged production P / (  fp Uz) ; note the ‘negative production ’ in (9)  induced by excitation; 
U,  is the jet exit velocity. 

layer also. Data from the measurement probe were accepted whenever a sharp peak 
in u, exceeded a set level. 

Even though fairly successful, eduction based on a trigger using a local ‘ footprint ’ 
signal from outside the flow has some constraints. Such a ‘footprint ’ signal cannot 
unambiguously discriminate between structures of different strengths, sizes, shapes, 
etc. For example, there is no way to determine if a recorded signal is from a weak 
structure near the probe or from a stronger structure farther away from the probe. 
Secondly, such a footprint signal approach cannot be used for eduction of structures 
in turbulent pipe or channel flow or in the inner layer of a turbulent boundary layer. 
In these flows, as well as in situations like fully developed turbulent jets or wakes, 
this scheme will not be effective because sharp, identifiable characteristic peaks do 
not occur in reference signals in these flows. In such situations, it is preferable to base 
the trigger on the measurement signal itself, so that structure detection and 
classification are unambiguous. An eduction scheme developed this way would be 
effective in all possible flow situations such as transitional, resonant, excited, or fully 



320 A .  K .  M .  Fade Hussain 

1 

Y l D  

XlD 
FIGURE 4(u-c). For caption see facing page. 
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FIGURE 4. Contours of axisymmetric jet preferred mode structure a t  Re, = 110000: (a )  coherent 
azimuthal vorticity (f2)/fp ; ( b )  incoherent longitudinal turbulence intensity (u:)?/U,; (c) in- 
coherent transverse turbulent intensity (v:)?/ U ,  : ( d )  incoherent Reynolds stress - (u, t i r ) /  UE; 
( e )  coherent production (P)/(fp U 3 .  The jet is weakly excited at St, = 0.3. 

turbulent ; it  will not require a reference signal and will be free from the constraints 
discussed above. In  the following, we discuss such a scheme, developed and 
successfully used in our laboratory. 

3.4. A general-purpose eduction sche,me 

On the basis of our definition of coherent structures, we feel that the trigger for 
structure eduction should be based on the instantaneous vorticity signal. The 
measurement of the instantaneous total vorticity vector being extremely hard, one 
component of vorticity is a reasonable compromise. Also, since coherent structures 
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FIGURE 5. Contours of elliptic jet preferred mode structure: coherent vorticity (s2)/fp (---) and 
coherent production ( P ) / ( f p  UE) (solid and dashed lines) for (a)  major axis; ( b )  minor axis. Dashed 
contours denote negative production. 
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are large-scale, vorticity signals can be smoothed so that instants of occurrence of 
large-scale vorticity-bearing flow events can be detected. 

In principle, a three-dimensional array of fast-response vorticity sensors should be 
used for structure eduction. However, one must consider probe interference, cost and 
limitations of present measurement technology (including data sampling and transfer 
rates of even the fastest computers). These considerations forced us to settle for a 
simple detection scheme involving smoothed vorticity contours in one plane only. 
Since in turbulent shear flows spanwise vorticity is expected to be dominant on the 
average, the eduction scheme is based on the spanwise vorticity. This scheme involves 
recording signals from an array of cross-wires, which are separated in the transverse 
direction and thus can provide the instantaneous vorticity in the spanwise (i.e. (x, y)-) 
plane. 

3.4.1,  The eduction procedure 

For a transverse array of cross-wires with a separation of Ay between adjacent 
probes, the use of Taylor's hypothesis, i.e. slat = - U,a/as, is unavoidable in the 
computation of spanwise vorticity w. This suffers from two constraints: validity of 
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the hypothesis and choice of the U,  value. Even though it is widely held that Taylor's 
hypothesis is inapplicable to turbulent shear flows, we have found that the hypothesis 
is valid for structures not in the process of tearing or pairing and that the true 
structure advection velocity should be used for U, (Zaman & Hussain 1981). The 
measurement of U,  itself is a challenging chore. The typical space-time correlation 
of velocity provides only a qualitative measure of U,, but is averaged over various 
motions (which are not all coherent structures). Such measurements are not only 
unrepresentative of the physics, but can be misleading. For example, such measure- 
ments give large variation (as much as threefold) in the advection velocity across 
the mixing layer of a circular jet (Bradshaw et al. 1964; KO & Davies 1971 ; Lau & 
Fisher 1975 ; Lau 1979). This well-documented, but striking observation should be 
evidence enough of the limitation of the correlation measurements [but can be 
reconciled by the occurrence of frequent tearing, and partial and fractional pairings 
in the mixing layer, as discussed by Hussain & Clark (19Sl)l. We have found that 
the wavenumber-celerity spectrum (Clark 1979) provides a fairly accurate measure 
of the dominant structure velocity. The most accurate measurement of U, results 
from space-time correlation of large-scale vorticity maps, obtained with two rakes 
of cross-wires separated in the streamwise direction. 

In the computation of vorticity, the central difference approximation was used so 
that an array of N number of cross-wires gave the instantaneous vorticity a t  ( N -  1 )  
intermediate locations, i.e. circulations a t  the regions between neighbouring cross- 
wires. (In our measurements so far we have had N = 8.) The unavoidable smoothing 
in this process due to finite transverse probe spacing is not a constraint for large-scale 
structures. In  fact, in order to highlight the large-scale structures as well as locate 
their vorticity peaks, this smoothing is necessary, and we even perform further 
smoothing by the short-time averaging over a period q centred a t  each instant t .  The 
choice of q is somewhat arbitrary. Clearly, q should be chosen to be smaller than, 
but of the same order as, the average time between passages of large-scale structures 
so that this averaging smooths out the high-frequency (i.e. mostly incoherent) 
fluctuations but retains the underlying large-scale vorticity. The obvious arbitrari- 
ness in the selection of < should be of no concern, as the coherent structure properties 
are finally extracted directly from the primitive, unsmoothed signals recorded. The 
smoothing is only a means of detecting coherent structures buried in random signals 
and identifying the amount of relative shifting required for optimum alignment. 

Of the structures which are located at the middle of the rake we limit further 
selection on the basis of two principal criteria : structure strength, and structure shape 
and size. That is, we accept structures which are sufficiently strong and of a 
sufficiently large size. We use the peak (smoothed) vorticity value wp as a measure 
of the structure strength. A judicious choice of the threshold wtl for the peak vorticity 
should not only involve a local flow measure but also a study of the structure passage 
frequency f as a function of wtl. The local maximum mean shear S, = (i3U/i3y)max 
seems to be the obvious choice for fixing wtl. In  free shear flows we find that an wtl value 
between two and three times the value of S, is adequate. After detecting structures 
with peak vorticity values above wtl, the locations (y, t )  of the peaks (i.e. centres) are 
assigned the coordinates (y,, t , ) .  The next step is to specify the structure size. We 
need to specify the transverse size Ay and require that the smoothed vorticities a t  
(y, f Ay, t c )  have the same sign as that a t  the centre and have values above a threshold 
wt2. From a study of the population of structures accepted as a function of Ay subject 
to the threshold criterion wt2, a suitable Ay can be chosen. The streamwise extent 
Ax of each structure centred a t  t ,  can be selected arbitrarily. Accepting short-time 
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validity of Taylor's hypothesis, i.e. Ax = - U, At, we require that the smoothed 
vorticities a t  (y,, t ,  &Ax/ U,) should be higher than wt2 and also be of the same sign 
as that at the centre. We chose Ax z Ay; this choice is reasonable because we do not 
expect the coherent structure to be highly elongated. However, the size criterion is 
chosen conservatively enough that structures of various sectional shapes will still 
survive through the eduction scheme, and the eduction scheme will sift out the 
dominant structure shape. 

Note that we have applied the transverse size criterion only a t  t , .  A more rigorous, 
but time consuming, alternative will be to take short-time correlation between 
smoothed vorticity signals at y, _+ Ay and require that these two signals are well 
correlated over a period Ar around t ,  ; this condition has been used in our laboratory 
by Tso (1983) for eduction in the fully developed turbulent region of a circular jet 
(see 53.5.2).  

3.4.2. Phase average 

Large-scale structures are accepted only when all criteria mentioned above are 
satisfied so that weaker, smaller, fragmented, distorted or transversely shifted 
structures are discarded from the ensemble average. With the structure centre as a 
phase (i.e. time) reference, accepted structures are then relatively aligned with respect 
to their centres (y,, t , )  and ensemble-averaged. This is the zeroth-iteration ensemble 
average. Since smoothed vorticity peaks may not be sharp, may not be clearly 
identified, or may not even be the true structure centres, it is necessary to refine 
further the alignment process outlined above in an attempt to sharpen the educed 
structure details and minimize the smearing effect of structure property dispersion 
on the educed structure. This refinement is achieved by taking the cross-correlation 
of individual structure vorticity and the zeroth-iteration ensemble average vorticity. 
Each realization is then relatively re-aligned (i.e. t ,  is shifted) by the time shift of 
the peak correlation. The resulting ensemble average of the realigned structures is 
the first-iteration ensemble average. This alignment process can be iterated until 
convergence is achieved. 

During the iteration process, structures requiring excessive shifts are discarded. As 
a next step in the improvement of eduction, further rejection is carried out by 
discarding weak structures. That is, additional structures are discarded if the 
vorticity correlation peak value is lower than a specified value. These enhancement 
procedures were adopted in order to sharpen further the educed structure features. 

Note that smoothed vorticity was used to detect acceptable structures and to 
determine time shifts for their optimal relative alignment. Once the structures (that 
meet the selection criteria) are identified and the corresponding necessary time shifts 
(or true structure centres) are known, the smoothed signals have served their purpose 
and are then discarded; only unsmoothed (raw) signals (around the revised structure 
centres) are used for ensemble-averaging in order to educe the structure, and these 
are optimally aligned before the average is computed. We also re-emphasize that the 
eduction scheme does not create an artificial structure, but merely helps select 
preferred natural structures and sharpen the structure details. Without a rigorous 
scheme like this, the educed structure will be excessively smeared and will reveal very 
little flow physics. The final ensemble average is the expected phase average. 

3.5.  Applications of the eduction scheme 
The eduction scheme explained above has been employed to educe coherent structures 
in the turbulent cylinder wake, the fully developed region of the turbulent axisym- 
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FIGURE 6. Coherent structure in the turbulent wake of a cylinder a t  x /d  = 40: (a )  contours of 
smoothed instantaneous spanwise vorticity w / S ,  : (6) ensemble-averaged spanwise vorticity 
(Q)/S,; ( e )  contours of coherent production ( P ) / ( U i S M )  x lo2; [lo is the free-stream velocity; 
T = tU , /d .  

metric jet, and the plane mixing layer by using a transverse rake of cross-wires. It 
is clear that  the same scheme can be employed for eduction using other measurement 
techniques such as scanning LDA, particle displacement velocimetry and digital 
image processing as well as using direct numerical simulation. We will discuss first 
hot-wire studies and then the eduction from direct numerical simulation of turbulent 
flows. 

3.5.1. Fully turbulent plane wakes 
We have applied this scheme to the case of the fully turbulent wake (in air) of 

a rigid circular cylinder of diameter d = 2.7 cm a t  the Reynolds number 
Re, = 1.3 x lo4 (Hayakawa & Hussain 1985). Figure 6 ( a )  shows contours of smoothed 
instantaneous spanwise vorticity a t  x/d = 40. If time t is transformed to streamwise 
distance x by assuming x = - Ue t ,  the streamwise coordinate here is compressed 5 
times to include more structures. The contour levels are non-dimensionalized by the 
maximum mean shear S ,  = (aU/ay)max. The contours of the two vorticity signs are 
denoted by solid and broken lines. The vortices, which are shed almost identically, 
are extremely irregular a t  x = 40d. There are frequent excursions of vortices across 
the wake centreline ( I' = y/d = 0) and smaller and intermediate size contours 
indicate significant tearing. Note that most structures are located much closer to the 
wake centreline than the half width of the wake. While the vortices are shed 
alternately and are of equal strength, the adjacent vortices further downstream are 
not of opposite sign, and their strengths vary widely. Thus, if eduction is triggered 
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on the initial vortex-shedding signal, the educed structures will suffer from significant 
smearing. Such smearing appears to be a major drawback of the results of Cantwell 
& Coles (1983). 

We chose utl = 3S,, ut2 = 0.5 S,, Ay = 0.4b ,  where b is the local wake half-width. 
I n  the wake, we found that 60 yo of the detected structures were satisfactorily aligned 
in the zeroth iteration and 90% of the structures aligned after first iteration. 
Ensemble-averaged spanwise vorticity contours at x = 40d are shown in figure 6 ( b ) .  
The aligned structure (below the centreline) is shown by solid lines and the two 
adjacent vortices of the opposite sign are shown by broken lines. Coordinates are 
non-dimensionalized by the structure convection velocity Uc and the cylinder 
diameter d. The lower contour level values for the broken-line contours are due to 
jitter relative to the alignment point. The corresponding contours of turbulence 
production ( P )  are shown in figure 6(c). Note that turbulence production a t  the 
structure centre is very small, but is larger in the upstream and downstream 
directions, being the maximum a t  the saddle on either side. 

3.5.2. Self-preserving region of circular jets 

Spurred by our expectation that coherent structures are characteristic features of 
all turbulent shear flows, we studied structures in the fully developed state of a 
turbulent circular jet. In this particular case we used a radial rake of 7 cross-wires; 
two single hot-wires were placed at the same station but displaced azimuthally by 
90" on either side of the rake in order to  identify the azimuthal mode of structures 
detected. This study has been carried out at x / D  = 50 and 100 in an axisymmetric 
air jet at Re, = lo5. The probe configuration enabled us to identify the modes 
(m = 0, + 1 ,  - 1, +2 ,  -2) of the structures. Results briefly discussed here are based 
on ensemble averages of 400 realizations. The robustness of the eduction scheme was 
confirmed by the facts that  contour details of structure properties changed very little 
between 200 and 800 realizations, that  left-handed and right-handed helical modes 
(i.e. m = + 1 and m = - 1 )  were detected with equal probability and their properties 
were found to be identical (thus confirming the lack of any bias in the facility), and 
that structure details at x/d = 50 and 100 were virtually identical (thus suggesting 
the achievement of equilibrium of the educed coherent structures). The modes 0, 1 
and 2 are found to occur a t  the local St, values of about 0.5, 0.41 and 0.54, respect- 
ively; these numbers have fairly large uncertainties. Also, the m = 0, 1 , 2  modes were 
found to occur about 2 % , 12 yo and 3 % of the total time, indicating m = 1 to  be the 
dominant mode. 

Figures 7 (a-c) show the contours of the azimuthal coherent vorticity, transverse 
coherent velocity, and coherent production for the m = + 1 mode. The structure front 
(i.e. downstream side) is considerably more active than the back (i.e. upstream side). 
The radial outward ejection of the fluid a t  the front, which is much stronger than 
the radial ingestion of the ambient fluid at the back of the coherent structure, seems 
to be the primary mechanism of jet mixing - a conclusion also reached on the basis 
of earlier flow visualization (Hussain & Clark 1981). Note that the active fronts 
revealed by our data appear to  be consistent with to the gaps revealed by the flow 
visualization pictures of Dimotakis, Miake-Lye & Papantoniou (1983). The incursions 
of non-turbulent ambient fluid to the jet centreline should not be surprising: thus 
the intermittency value on the jet centreline can obviously be less than 1 even though 
most experimenters have set it to 1 (see, for example, Wygnanski & Fiedler 1969). 
However, as we have frequently warned, one must also be careful about taking the 
flow visualization pictures too seriously. Further details of the far field of the circular 
jet have been reported by Tso (1983). 
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3.5.3. Eduction in turbulent mixing layers 

( a )  Laboratory experiments. Exactly the same scheme has been used to educe 
coherent structures in a fully turbulent plane mixing layer. To eliminate the effects 
of the initial instability and to focus on coherent structures in the fully developed 
turbulent region, the study was carried out in a single-stream plane mixing layer 
originating from a fully developed turbulent boundary layer. Just  like a laminar free 
shear layer, the initially fully turbulent mixing layer also rolls up and then undergoes 
subsequent evolutions via pairing. We focused our attention on the single structure, 
not on a pairing stage. The evolution of the structure is complete before x = 5006,, 
beyond which the structure details achieve an equilibrium stage. The flow details 
have been discussed by Hussain & Zaman (1985); note that the results reported in 
that paper were based on a trigger derived from a single point at the high-speed edge 
of the mixing layer. 

The present scheme with a transverse rake of 8 cross-wires was applied to educe 
structure details in the plane mixing layer in the equilibrium range. Figures 8(a ,  b )  
show examples of the recorded time-evolutions of (smoothed) spanwise vorticity maps 
a t  T = 10008, and 20008, respectively. It is interesting to note that, contrary to the 
impressions one obtains from the Brown-Roshko pictures, the transverse extent of 
most structures is considerably smaller than the average thickness of the mixing 
layer. Thus the dominant large-scale structure does not span the average thickness 
of the layer. The average thickness is larger than the transverse scale because of 
transverse wandering (figures 8a ,  b)  and spanwise contortions of the structures. This 
has been confirmed by recording spanwise vorticity maps in two planes separated 
in the spanwise direction. Contours of coherent spanwise vorticity, coherent trans- 
verse velocity and coherent production a t  x = 20008, are shown in figures 8(c-e). 
The turbulence production contours are also consistent with the data discussed for 
the other cases; i.e. production is maximum a t  the braid and is very low a t  the 
structure centre. 

(b)  Direct numerical simulation. We have taken advantage of the capability of 
supercomputers to understand turbulent shear flows and to  extend the capability of 
laboratory measurement techniques via direct numerical simulation of the complete 
Navier-Stokes equations, without recourse to subgrid modelling. Some preliminary 
results of this study have been reported by Metcalfe et al. (1986a) and further results 
will be presented soon. Solutions of the Navier-Stokes equations in three spatial 
dimensions and time have been obtained on a 64 x 64 x 64 grid domain by applying 
a pseudospectral method with periodic boundary conditions in streamwise and 
spanwise (x, z )  directions and free-slip conditions in the transverse ( y )  direction 
(Gottlieb & Orszag 1977; Riley & Metcalfe 1980; Metcalfe et al. 19866). The 
Reynolds number of the flow was kept sufficiently small for all critical scales of motion 
to be accurately resolved. The mean velocity profile was a hyperbolic tangent profile 
on which a background, quasi-random, three-dimensional disturbance velocity field 
was superimposed. Numerical experiments have been performed for an initial 
condition with random fluctuations superimposed on : a small-amplitude funda- 
mental (Michalke 1965) to induce roll-up ; small-amplitude fundamental and sub- 
harmonic perturbations to induce one pairing, small-amplitude fundamental, first 
subharmonic and second subharmonic perturbations to induce two pairings. In 
addition, in order to  focus on the dynamics of ribs ($4.3) ,  one run included 
additionally a spanwise wave mode (Lin & Corcos 1984) in order to induce well-defined 
ribs. These flows with initially organized modes correspond to  experiments with 
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FIGURE 8. Eduction of coherent structure in the fully turbulent plane mixing layer: (u, b ) ,  contours 
of smoothed spanwise vorticity w/S,; 8, = 0.67 mm; (c) spanwise coherent vorticity (Q)/S,; (d ) ,  
coherent transverse velocity u , / U O ;  ( e )  coherent production ( F ' ) / Z T ; # , ) .  ITo is the high-speed side 
mean velocity; = 12.3 m/s; T = t170/6'e; Y = y / B ,  where 6' is the local momentum thickness of 
the mixing layer. 

controlled excitations. As discussed earlier, controlled excitation is particularly 
preferable for focusing on specific flow events. 

There are a number of differences between the laboratory experiments and 
numerical experiments using spectral methods. The former is evolving in space ; the 
latter is evolving in time, which allows higher Re and better resolution than spatial 
simulation, but i t  is less realistic as i t  uses periodic boundary conditions. Recent 
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FIGURE 9. Coherent structure characteristics in a plane mixing layer computed by direct numerical 
simulation: ( a )  contours of instantaneous vorticity wJS, in the (x, 2)-plane a t  y = 0;  contour values 
range from 0 to 2.5 in increments of 0.1 ; (b )  same contours as in ( a )  but with small amount of forcing; 
contour values are in increments of 0.1 ; (c) ensemble average spanwise vorticity (sZ)/S, contours 
for cases ( a )  (top) and ( b )  (bottom); contour values in increments of 0.1; ( d )  rontours of coherent 
streamwise velocity UJU;  contour values are from -0.14 to 0.16 in intervals of 0.02. The velocity 
difference is 2U across the mixing laper. 

spatial simulations have successfully used inflow-outflow boundary conditions 
(e.g. Grinstein, Oran & Boris 1986a, 6). The Reynolds numbers are Re, zz lo5 and 
Re, x 1500 for the experiment as opposed to Re, z lo3 and Re,, z 60 for the 
simulation; 6 is the local thickness of the mixing layer. The laboratory flow is that 
from an initially fully developed turbulent boundary layer, and phase averages 
include selection from many (about lo4) realizations. The simulation involves 
uncorrelated random initial disturbances, and multiple realizations (up to 64) are 
achieved from the same computation by taking data at successive spanwise planes 
as separate realizations. In  spite of these differences, the agreement between 
experiments and simulations (discussed below) seems impressive. 
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Figure 9 ( a )  shows the contours of instantaneous vorticity wJS, in the (2, 2)-plane 
at y = 0. It is clear that  there is no spanwise coherence of structures in the unforced 
simulation, consistent with our laboratory data. Even a small amount of forcing 
organizes the structures in the spanwise direction (figure 9b) .  The ensemble average 
spanwise vorticity contours are shown in figure 9(c) for the unexcited (top) and 
excited (bottom) cases. Note the close correspondence between not only the peak 
values but also the contour shapes. The contours of coherent streamwise velocity 
(unexcited case) are shown in figure 9(d ) .  Considering the limitations of the two 
techniques, the agreement with laboratory data (compare figures 8 c  and 9c) is very 
good. Detailed comparison and discussions will be given in a forthcoming paper by 
Hussain & Metcalfe. 

4. Some benefits of the coherent structure concept 
The coherent structure approach to turbulence has already produced some benefits. 

These include understanding of entrainment phenomena, explanation of negative 
production, insight into the physics of turbulence production (such as roles of ribs 
and vortex stretching), assessment of turbulent flow topology, and explanations for 
excitation-induced enhanced mixing, turbulence suppression and noise suppression. 
We will discuss some of these briefly. 

4.1. Entrainment 

One inference from coherent structures interaction is that  entrainment is not just 
diffusion of vorticity a t  the turbulent/non-turbulent interface, somewhat like 
nibbling away of irrotational fluid by a swarm of fine-scale vortices. Entrainment is 
now believed to be mostly a result of large-scale engulfment of non-vortical fluid due 
to the BiobSavart induction of large-scale coherent structures near the interface. Of 
course, only viscosity can cause true entrainment via diffusion. Once a non-turbulent 
blob is entrapped within the influence of a coherent structure, the non-turbulent fluid 
is sheared into thin laminations with increased interface so that (molecular) diffusion 
of vorticity fluctuations by viscosity can effectively complete the turbulent entrain- 
ment process - the process of imparting random, three-dimensional vorticity to 
irrotational fluid. 

4.2. Negative production 

An understanding of the elusive, so-called phenomenon of ‘ negative production ’ or 
counter-gradient transport of heat and momentum can be obtained via the coherent 
structures concept. In  most turbulent shear flows, the mean velocity gradient and 
the mean momentum transport by turbulence (i.e. the Reynolds stress, -uV) retain 
the same sign across the flow or switch sign together so that their product, i.e. the 
shear production, remains unchanged in sign. (In coordinates aligned with the 
free-stream velocity, the time-average production in high-speed shear flows is 
essentially shear production z, as normal production pn is comparatively small.) The 
momentum transport is then in accord with the gradient transport hypothesis; i.e. 
the mean momentum transport by turbulence is down the mean momentum gradient. 
(As is well recognized now, this kind of gradient transport concept, borrowed from 
kinetic theory, is not appropriate for turbulent shear flows.) However, in the case 
of non-symmetric flows such as a wall jet or a channel with the two walls of unequal 
roughnesses, the zeros of the mean velocity gradient and the Reynolds stress ( -UV)  
do not coincide. Consequently, there is a (small) region of ‘negative production ’ where 
the mean momentum transport by turbulence is counter to  the mean momentum 
gradient aU/ay. Even though this does not violate any basic principle and should 
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not be particularly surprising, this has been the subject of some controversies and 
investigations (Beguier et al. 1977; Hinze 1970; Hanjalic & Launder 1972). It is clear 
that  turbulent heat or mass transfer in shear flows with non-symmetric mean 
temperature or mean concentration profiles should also have regions of counter- 
gradient heat or mass transport. 

Our studies of coherent structures have provided specific examples of negative 
turbulence production (Hussain & Zaman 1980, 1985) and direct explanations for 
negative production in terms of coherent structures. While there may be other 
possibilities, these two scenarios are likely to be the most dominant events contri- 
buting to negative production. Control of coherent structures or their interactions via 
excitation can generate negative production in a flow which otherwise shows no 
negative production (see also Wygnanski, Oster & Fiedler 1979; Riley & Metcalfe 
1980). 

Non-zero production in the case of a single structure in a mixing layer requires that 
the cross-section of spanwise structures be non-circular and be inclined with the flow 
direction. For convenience, consider the simplistic case of an elliptic cross-section of 
the structure (figure 10). When the major axis of the ellipse is somewhat aligned with 
the direction of shear (configuration B in contrast with configuration A), the net 
coherent production is negative. Note that this is opposite to what one’s intuition 
would suggest. 

The second example is that of motions of two vortices around each other during 
the pairing process. Let us identify four successive phases of the pairing process by 
the configurations C, D, E and F (figure 11). Ideally, these four configurations can 
cyclically repeat themselves indefinitely. In  reality, if the Reynolds number is high 
enough, merger typically takes place abruptly soon after the phase F. (In a 
low-Reynolds-number axisymmetric jet, the leapfrog motion of two adjacent vortex 
rings can continue for a few cycles before merger; see Reynolds & Bouchard 1981.) 
Detailed coherent Reynolds stress measurements show that the phase F produces 
significant counter-gradient Reynolds stress over the lower-speed half of the layer 
thickness. 

Since either of these negative-production configurations (B and F in figures 10 and 
11) is expected in general to occur randomly in space and time, their occurrence will 
not be strongly felt in a time average. However, if either can be made to occur 
successively at a fixed location, even the time average will show counter-gradient 
momentum transport by turbulence, hence negative production, a t  that location. Via 
appropriate excitation, we have been able to induce at fixed locations the stable 
pairing (i.e. pairing occurring repeatedly a t  a location) and configuration B of a 
single structure in plane and axisymmetric mixing layers. We have shown that this 
spatial localization produces time-mean negative production ; see figure 3 (9) for an 
example. The negative ( P )  data in figure 3 (f ) are lower than in figure 3 (9) because 
the phase corresponding to figure 3 (f) is different from that of configuration F, which 
dominates figure 3(g). In  some flow situations, the excitation may be available 
naturally either via (settling chamber or other facility-related) resonance or via 
upstream feedback from structures themselves. This is what we suggest is happening 
in situations showing negative production. 

4.3. Production mechanisms: ribs 

From all the detailed measures of coherent structures in plane mixing layers and 
wakes, and circular and elliptic jets (discussed in ss3.2 and 3.5), we find that 
turbulence production is the maximum ah the saddle, which is also characterized by 
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FIGURE 10. Negative production in a mixing layer due to a single structure; configuration A 
produces net co-gradient momentum transport and configuration B produces net counter-gradient 
momentum transport. 
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FIGURE 11. Schematics of four successive phases (configurations C, D, E and F) 
of the pairing process. 

a very low value of spanwise vorticity . The relative configurations between coherent 
vorticity and production in these cases are the same as shown in figure 1 ( b ) .  Since 
vortex stretching is the most likely mechanism for production, we concluded that the 
saddle (the so-called ‘braid ’) region must consist of longitudinal vortices aligned with 
the diverging separatrix. Adjacent vortices in the ‘ braid ’ have opposite circulations 
so that the net circulation in the (y,z)-plane is zero. We have called these vortices 
‘ribs’ (Hussain 1983b). The ribs have been visualized in a number of laboratories 
including ours (e.g. Bernal & Roshko 1986; J .  Katz personal communication, 1983; 
C. R. Smith personal communication, 1983; Jimenez, Cogollos & Bernal 1985). Ribs 
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FIGURE 12. Dynamics of ribs: (a )  direct numerical simulation; (6) schematic; (c) flow details 
around saddle; (d )  a more realistic picture of ribs and rolls. 

are clear in direct numerical simulations as shown in figure 12(a)  (studied by us in 
collaboration with R. W. Metcalfe). The idealized schematic of the plane mixing layer 
and its end view are shown in figure 12(b, c ) ,  and a realistic schematic is shown in 
figure 12 (d ) ,  where the spanwise contortions of the rolls induced by the ribs are also 
emphasized. Considering the plane wake as a combination of two opposed (and of 
course coupled) mixing layers lying on top of each other, the wake structure can be 
similarly interpreted. 

Induced by these longitudinal vortical substructures, external fluid moves towards 
the turbulent shear flow region and can percolate through the braid region without 
being necessarily entrained. Thus irrotational external fluid approaching a mixing 
layer may escape entrainment. In  the case of the wake, vortical fluid from one side 
of the wake can be entrained by structures on the opposite side. 

The continual stretching of ribs causes them to spin faster due to conservation of 
angular momentum. This is equivalent to increasing velocity fluctuations and hence 
production of turbulence. I n  reality, the stretching enables the ribs to counter the 



Coherent structures and turbulence 335 

decay due to viscous diffusion and retain their spin. Viscous diffusion transfers 
vorticity to the ambient non-vortical fluid that is drawn towards the shear flow. Thus 
the underlying mechanism for production and entrainment is the same, namely 
vortex stretching. As a result of stretching by the primary structures, spinning 
turbulent fluid is advected away from the saddle, where new turbulence (i.e. spinning) 
is continually produced. However, the location of production is not that of mixing, 
as the spin is aligned with the diverging separatrix; mixing must mean acquisition 
of three-dimensional, random vorticity. When this entrained fluid a t  the saddle with 
(one-dimensional) vorticity aligned with the diverging separatrix reaches the primary 
structure fluid with large-scale spanwise vorticity, the interaction of the two 
orthogonal vorticities produces three-dimensional turbulence and mixing. Thus the 
connection point of the ribs with the rolls is the site of most true mixing. As the ribs 
are wrapped around the rolls, vortex lines are turned and aligned with the coherent 
flow, thus causing large contributions to coherent helicity (see 54.4). The action of 
the rolls is to take this turbulent fluid and deposit i t  in the structure core. This is 
the mechanism for continual replenishment of structure turbulence, which would 
otherwise decay due to dissipation. Thus one can say that coherent structures have 
a built-in mechanism for their own survival, albeit short-time survival. Based on these 
observations, we claimed that ' vortex stretching is the physical mechanism for 
entrainment and production in all turbulent flows ' (Hussain 1983 b ) .  

The physics of the mixing layer, and perhaps of all shear flows, as unfolded above, 
is rather a t  variance with the accepted notions in turbulence. Since vortex stretching 
appears to be the key mechanism for production, the rapid distortion theory 
(Batchelor & Proudman 1954; Hunt 1973, 1985) seems to be more appropriate here 
than shear production suggested in standard texts. Since mixing, hence dissipation, 
occurs a t  the connection points of ribs with rolls, the sites for dominant production 
and dissipation seem to be different. The prevalent notion is that  turbulence is first 
produced in u and then transferred to v and w by the isotropizing role of pressure 
(Tennekes & Lumley 1974). However, since the diverging separatrix is nearly in the 
streamwise direction, turbulence is produced first primarily in v and w components, 
which then contribute to u as the ribs wrap around the rolls; of course, since ribs 
are inclined with x, one can say that turbulence is produced simultaneously in u, t i  

and w components. Even though these discussions address the plane mixing layer, 
these points equally apply to other flows. 

4.4. Helicity and dissipation 
There has been some interest in coherent structures in connection with turbulent flow 
topology. A key feature of this topology is helicity and its connection with coherent 
structures. Moffatt (1969) introduced the concept of helicity, 

H =  u.wdT'= hdV, 

and showed that, when integrated over the entire flow domain, H is an invariant of 
the Euler flow. This global invariant, however, says nothing about local values of 
helicity density h = ( u - o ) ,  which can (and presumably must) have large spatial 
variations, especially because turbulent flow is far from equilibrium (Levich, Levich 
& Tsinober 1983). Hereinafter, helicity is loosely used to denote helicity density. For 
a vortex element not completely orthogonal to the local velocity, the local helicity 
is non-zero. Now, wherever u ' o  is large, the vector quantity u A w is small because 
of the trigonometric identity, 

1U.012 + I U A 01' = 1Ul2 /O)2. 

s s 
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Note that in the Navier-Stokes equation, 
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the nonlinear term u A w is responsible for cascade from larger to smaller scales - 
the mechanism by which larger scales decay. Also, in the case of reduced cascade, 
there will be reduced production of fine scales and hence reduced dissipation. Since 
u A w is analogous to the Coriolis force, u A w can also be viewed as a vortex force 
locally moving a vortex filament transverse to i t  (in a direction normal to the plane 
defined by u and w ) .  Thus u A w contributes to the local kinking of vortex filaments, 
and thus to vortex stretching; it is related to turbulent momentum transport in a 
turbulent flow. 

It therefore follows that helical structures will have low dissipation and can 
therefore be expected to be long-lived. Levich et al. (1983) and Moffatt (1983) 
suggested that coherent structures are helical. [This suggestion has to be limited to 
three-dimensional structures as helicity is identically equal to zero for toriodal 
structures in the near field of an axisymmetric jet or the Brown-Roshko rollers of 
the plane mixing layer. On the other hand, three-dimensionality of structures implies 
non-zero helicity. Thus the claim that three-dimensional coherent structures are 
helical (Tsinober & Levich 1983) is not surprising. Also, this suggestion is inconsistent 
with our observation of the structure life time (§2.5.4)] It follows from the above 
reasoning that most dissipation must occur outside coherent structures ; that is, 
domains of large helicity and dissipation are spatially exclusive. Moffatt ( 1985) 
showed as a consequence of flow topology that regions of large helicity must be 
separated by sheets of dissipation. While Moffatt's ideas are relevant to Euler flows 
where vortex dynamics and interactions are intrinsically different from those in a 
Navier-Stokes flow, there is some basis for assuming that these ideas are relevant 
to coherent structures because (large-scale) coherent structure dynamics is essentially 
inviscid. Even though dissipation peaks may occur outside helical structures, it is 
not likely that the total dissipation is dominated by these peaks. Obviously there is 
dissipation within the coherent structures, which can be significant. 

Direct measurement of instantaneous vorticity in turbulent flow is virtually an 
impossible task. Wallace (1986) and Frish & Webb (1981) seem to be the only ones 
who have successfully measured it.  A realistic probe for local measurement of 
vorticity is not yet available. Thus measurement of helicity is extremely difficult. The 
measurement of dissipation is equally difficult; some estimates can be made on the 
assumptions of local isotropy and Taylor hypothesis (for example, Antonia, 
Satyaprakash & Hussain 1982). We have taken advantage of direct numerical 
simulation of turbulent flows to compute helicity and dissipation contours in a mixing 
layer (this research is being done in collaboration with R. W. Metcalfe). Figure 13 (u-c) 
shows the contours of spanwise vorticity, helicity and dissipation in the streamwise- 
transverse (x,y)-plane. The spanwise vorticity o is shown in order to indicate the 
relative location of coherent structure in the mixing layer. The dominant contours 
of helicity and dissipation in figure 13(b, c) have been superposed in 13 ( d ) .  Note that 
helicity contours consist of positive and negative values. It is apparent that while 
there are overlapping domains of helicity and dissipation contours, their peak regions 
do not overlap, lending some support for the spatial exclusiveness of domains of 
dissipation and helicity. One must recognize that this flow is still in a transitional 
stage, and a test of the conjecture about spatial exclusiveness of helicity and 
dissipation is yet to be made in a more turbulent stage of the flow. Numerical 
simulations by Pelz et al. (1985, 1986) suggest that  in turbulent flows velocity and 
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FIGURE 13. Plane mixing layer structure topology from direct numerical simulation. Contours in 
the (s, y)-plane of: (a )  spanwise vorticity ; ( b )  helicity with positive (solid lines) and negative (dashed 
lines) values ; (c) dissipation ; ( d )  comparisons of helicity (solid and chain-link lines) and dissipation 
(dotted lines) contours; contours in ( d )  highlight peak regions of ( b )  and (c). Contour values in (a)-(d) 
are not indicated, as relative locations of contour peaks only are of interest here. 

vorticity tend to be aligned; the results of Kerr & Gibson (1985) are somewhat 
different, presumably because of forcing and the different spectrum used initially in 
this case (Levich and Shtilman personal communications). 

Two points need to be emphasized. First, by definition, u ' a  is not Galilean 
invariant. This obvious point seems to have escaped emphasis until noted by Speziale 
(personal communication, 1985). It seems to  me that a logical choice would be to take 
u ' a  in a frame advected with the structure centre. Secondly, since helicity can have 
large fluctuations with a variety of scales, most helicity within a structure will be 
phase incoherent. Thus, one needs to define both coherent and incoherent helicities, 
i.e. - ( u )  * ( w )  and - (u, * a,), where the brackets indicate phase average. Coherent 
helicity is meaningful only when eduction is performed after careful alignment as 
outlined in $3.5 .  
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4.5. Coherent structures and aerodyizamic noise 

A primary example of the use of the coherent structures approach is aerodynamic 
noise. Although there is a general consensus that coherent structures are important 
in aerodynamic noise generation, neither the generation mechanism nor the signifi- 
cance in jet noise is known yet. Laufer (1974) proposed that pairing was the principal 
mechanism for jet-noise generation. However, we immediately contended that this 
mechanism was very unlikely. For an initially laminar jet, most of the pairing activity 
occurs in the shear layer mode near the lip of the jet and is complete within about 
one diameter from the jet exit, while most noise originates from near the end of the 
potential core, say, between 4 to 8 diameters (Juv6, Sunyach & Comte-Bellot 1980). 
I n  this early region, shear-layer pairing can produce significant sound ; but most jet 
noise is produced near the end of the potential core. Moreover, most practical jets, 
being turbulent at the exit, seldom involve pairing of vortices. The initially 
turbulent mixing layer rolls up, typically at the jet column mode, thus bypassing the 
shear-layer mode. These facts suggest that  pairing - whether induced or occurring 
naturally - even though capable of producing sound, cannot be the dominant cause 
of noise in practical jets. 

Our proposition is that  i t  is the breakdown process of the initial toroidal structures 
into substructures near the end of the potential core and their interactions that 
produce most noise (Hussain & Zaman 1981 ; Hussain 1980, 1 9 8 3 ~ ) .  It is quite likely 
that the breakdown process involves the cut-and-connect mechanism by which 
substructures result from the initial toroidal structure (see figure 14). We believe that 
this mechanism is also responsible for the avalanche of three-dimensional and 
smaller-scale motions, mixing, and generation of high turbulence and Reynolds stress 
a t  the end of the potential core. This mechanism may be central also to the generation 
of enstrophy and helicity in turbulent flows (Levich, personal communication). 

4.6. Cut-and-connect mechanism of vortex interaction 

A turbulent flow can be viewed as a tangle of vortex filaments. Even in transitional 
flows, initially rolled-up two-dimensional vortical structures develop three- 
dimensionality through secondary instability and then undergo interactions. A study 
of vortex interactions is obviously crucial to understanding transition processes as 
well as basic turbulence phenomena such as transport, mixing, turbulence production, 
and generation of aerodynamic noise. A highly interesting aspect of vortex inter- 
actions is the cut-and-connect process during which two adjoining vortex filaments 
are cut and connected after switching, i.e. they are cross-linked. This curious 
phenomenon (topological transformation) has been observed experimentally by a 
number of investigators (Hama 1960; Crow 1970; Kambe & Takao 1971 ; Oshima & 
Asaka 1977) but has so far remained unexplained. Theoretical analysis is obviously 
complicated because of the intricate three-dimensional nature of the process and 
because the event occurs rapidly and must involve viscosity, as such a process is 
impossible without viscosity. The cut-and-connect provides an alternative mech- 
anism for energy cascade and a mechanism for generation of helicity (and thus perhaps 
coherent structures). We have analysed an idealized model utilizing the vorticity 
equation and geometrical symmetries, and applied this analysis to the prediction of 
turbulent jet noise. The analysis involves superposing a small vortex ring at  the 
interaction region so that the vorticity of the ring cancels that  of the filaments and 
also makes the connections as shown in figure 15 (a) .  We invoke the conservation of 
impulse P = (+ )p j r  A o dv during the interaction; p is the fluid density, r is the 
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FIGURE 14. Idealization of the breakdown process in the circular jet. 
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FIGURE 15. (a) Vortex configurations before and after the cut-and-connect process; ( b )  assumed 
mechanism of the recoil vortex. 

position vector, w is the vorticity, and the integration is taken over the interaction 
volume. Since the superposed vortex has downward impulse we need to further 
superpose a recoil motion with upward-directed impulse. Hence the recoil vortex ring 
shown in figure 1 5 ( b ) .  

The fluid motion is analysed by invoking the geometric symmetry conditions on 
the initial and final states and by expanding the velocity u and vorticity o fields in 
these two states as polynomials of coordinates. As shown in figure 1 5 ( b ) ,  the two 
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filaments have two planes of inversion symmetry, namely the (x, 2)- and (y, z)-planes, 
and the recoil vortex has an axisymmetry about the z-axis. The coefficients of the 
polynomial are determined from the two states and the complete three-dimensional 
vorticity equation. The resulting solution is in terms of a single function T(t) ,  

= O  wheret* = 0 
d T  T(T-  1 )  -+ 
dt t* 

Here, T i s  the circulation and cr is the vortex core radius. The solution T = e7/ ( l  + e 7 ) ,  
where r = t / t * ,  has the expected behaviour as i t  varies from 0 to 1 in a very short 
time 0(t*). The velocity and vorticity fields through the process can be expressed in 
terms of T but are too detailed to discuss here (a forthcoming paper by Takaki & 
Hussain will give details). 

4.6.1. Prediction of j e t  noise 

The far-field sound pressure caused by a cut-and-connect event can be estimated 
from Lighthill’s (1952) formula for a compact source. The jet noise can be estimated 
by assuming that cut-and-connect events occur around initial vortex rings in the jet 
near field because of lobe formation due to the Widnall instability. The effect of the 
jet mean flow is considered by applying Goldstein’s (1984) formula. For a realistic 
inclination of the interacting vortex filament, the sound intensity I is estimated as 
(see Takaki & Hussain 1985, for details), 

Here D is the jet diameter, d is the mean vortex spacing, a is the ambient acoustic 
speed, and U is the jet velocity. This formula shows qualitative agreement with 
experimental data of Lush (1971). The Us dependence is consistent with Lighthill’s 
prediction for quadrupole sources. The factor (d/a)6 is a new result emphasizing the 
critical importance of the degree of vorticity concentration. 

4.6.2. Pairing and vortex sound 

We feel that  the role in aerodynamic noise of coherent structures - whether pairing 
or not - can be better explained in terms of vorticity dynamics. The relationship 
between vorticity and far-field pressure was first proposed by Powell (1964) in the 
form of an acoustic analogy. His vortex sound theory has subsequently received 
further simplifications and interpretations by Howe (1975), Mohring (1978) and 
Obermeier (1985). Powell was able to  show that the source term was V . 0  A u (W 

being vorticity and u the velocity) ; this contrasted the Reynolds stress and dilatation 
representations of Lighthill (1952) and Ribner (1962), respectively. Mohring showed 
that the far-field pressure of a jet could be expressed in a form linear in vorticity, 
thus allowing superposition of all vortical sources in the tensor term 
Q = a3/a t3  j, y ( y  A W )  d3y, which is the heart of his formulation. Here V denotes the 
compact domain of the vortical fluid. This expression clearly emphasizes how time 
variation of vorticity can contribute to  sound. For a vortical structure to contribute 
to sound, it must contribute to  Q. Even though speculations abounded about the 
role of pairing in aerodynamic noise generation (Ffowcs-Williams & Kempton 1978 ; 
Kibens 1980; Crighton 1981 ; Zaman 1985), precisely how pairing can produce sound 
was never addressed until recently by Bridges & Hussain (1986). When a jet is initially 
turbulent, vorticity at the scale of the structures is diffuse; thus time variations of 
both y and o will be weakened and Q will be decreased. 
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Since so much of coherent structure dynamics has been discussed in terms of 
pairing, perhaps i t  is worth asking: What is pairing 'I It is meant to be a flow event 
when two vortical fluid lumps merge to form a single vortical lump. In  fact, the 
entrapment of ambient fluid between two (or more) merging vortical lumps was 
proposed as the primary mechanism of entrainment (Winant & Browand 1974), even 
though Hernan & Jimenez (1982) found by image processing of the mixing layer films 
of Brown & Roshko (1974 that  80 "/h of entrainment involved no pairing. The concept 
of pairing appears elusive, especially for aerodynamic. noise generation. In  a turbulent 
shear flow, vortical structures are influenced by other structures via Biot-Savart 
induction; they can begin interacting before they come into physical contact. In  early 
regions of jets and shear layers such induction leads to merger. However, pairing-like 
motions need not result in actual mergerlpairing. Acceleration of vorticity-bearing 
fluid elements - pairing or not - can occur in a turbulent or unsteady flow, contri- 
buting to Q and thus to  far-field noise. 

5. Studies of technological relevance 
We have carried out a number of studies with the objective of modifying (both 

enhancing and suppressing) burbulence through manipulation of coherent structures 
and their interactions. Such manipulation has been effected by passive (e.g. geometry 
modification) or active (e.g. excitation) means, involving intricate couplings of 
various instability and feedback modes, and has important technological applications 
(Roshko & Reynolds, personal communication). I n  the following, we will review some 
of our results pertaining to response of jets to excitations. Understanding of these 
basic aspects is crucial to achieving turbulence management. 

5.1. Preferred mode and e8ects of excitation of circular jet 

The circular jet evolving from a contraction nozzle has two lengthscales: the exit 
boundary-layer thickness (say, the momentum thickness 8,) and the jet diameter D. 
Associated with these two scales there are two distinct modes of instability as well 
as two distinct modes of structure interaction such as pairing. These two inst,ability 
modes were investigated by Zaman & Hussain (1977) and were characterized by them 
as 'shear layer mode ' and 'jet column mode '. Sufficiently close to the nozzle and with 
a top-hat exit flow profile (i.e. 8,/D + l ) ,  the mixing layer of the circular jet is not 
dissimilar from that of the extensively investigated plane layer. This is true for 
x 7 +D for which 8, (or alternatively the instability wavelength A )  is the appropriate 
lengthscale. Further downstream, say a t  x x D, the mixing-layer thickness becomes 
comparable to D, and thus the effect of the azimuthal curvature can no longer be 
ignored. In  this region, D is the appropriate lengthscale. Since 8, and D can be fairly 
arbitrarily varied, shear-layer phenomena and jet-column phenomena should be 
expressed in terms of 8, and D as the corresponding lengthscales, respectively. The 
incorrect use of D as the lengthscale characterizing near-field jet behaviour is still 
frequent. 

The initially laminar shear layer has been found to roll up a t  St,, = 0.012 (Zaman 
& Hussain 1977, 1980), while the theoretical value is Xt,, x 0.017 (Michalke 1965; 
Freymuth 1966). This apparent contradiction can perhaps be reconciled by the fact 
that St,, x 0.012 corresponds to the case of maximum amplification while 
St,, x 0.017 corresponds to  the case of maximum amplification rate. That is, when 
excited a t  one frequency a t  a time, "3,, x 0.012 produces the largest disturbance 
amplitude, but StOe z 0.017 produces the largest growth rate (obviously with a larger 
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h in the former case). The fact that  natural (i.e. unexcited) instability occurs at 
St,, x 0.012 appears to be clear evidence of feedback. The occurrence of feedback has 
been debated a t  length but remains unsettled. The induced velocity at the lip due 
to two rolled-up vortices 1 and 2 at two St,, values (i.e. 0.017 and 0.012) will be Cu, 
and Cu,, where Cis a constant, and u1 and u, are the saturation disturbance velocities 
associated with St,, = 0.017 and 0.012, respectively. Because u2 > u1 and ambient 
disturbances in an unexcited flow occur in a broadband range of frequencies, 
St,, x 0.012 will experience the strongest feedback a t  the lip and will be sustained 
by feedback. That is, given a broadband range of ambient disturbances, the 
disturbance a t  St,, x 0.012 will dominate. 

Further downstream, i.e. near the end of the potential core, the instability scales 
on the jet diameter, D. The corresponding value of Xt, characterizes the jet preferred 
mode. Based on excitation data for 8tD Q 0.6, Crow & Champagne (1971) suggested 
that the preferred mode was that which produced the maximum amplification of the 
centreline total turbulence level ui. They found that the growth rate of ui increased 
with increasing StD until StD = 0.3 and then dropped ; they thus identified StD x 0.3 
as the preferred mode. Extending the StD range to higher values, Zaman & Hussain 
(1977, 1980) found that StD x 0.85 produced the highest ui, even higher than that 
at St, = 0.3. They redefined the jet preferred mode to be that frequency a t  which 
the fundamental amplitude uf receives the maximum amplification. This is a 
non-trivial point since ui can differ considerably from u;. 

Why does the preferred mode St, value reported in the literature vary over a 
range ‘2 A number of factors can cause the discrepancies. First, the frequency of the 
peak in the time-averaged spectrum varies considerably in x and r .  This variation 
has three origins: (i) because of pairing, average frequency can drop with increasing 
x (Browand & Laufer 1975); (ii) there can be a large radial variation of structure 
passage frequency (as much as threefold) as shown by Lau & Fisher (1975) and others, 
which has been attributed to partial and fractional pairings by Hussain & Clark 
(1981); (iii) the tilting of non-circular structures as they are advected downstream 
is an additional source of radial variation of structure passage frequency (Hussain 
& Zaman 1981). Thus, for reference and comparison purposes, the measurement 
location for identifying the preferred mode must be precisely stated. For jets with 
top-hat exit profile, the end of the ‘time-mean’ potential core on the jet centreline, 
say, x / D  = 4, is a good reference point. Secondly, the identification of the preferred 
mode from spectra in an unexcited jet is typically not meaningful, as jets are almost 
always ‘driven ’ because of various unavoidable tunnel acoustic modes and ambient 
disturbances (typically laboratory acoustic modes) which manifest as free-stream 
turbulence (Hussain 1980). If these disturbances fall within the receptivity band of 
the jet or shear layer (M. Morkovin, personal communication), these will be ampli- 
fied (at a rate depending on the disturbance frequency and amplitude). Thirdly, as 
already mentioned, determination of the preferred mode should be based on u; and 
not on ui. The excitation amplitude should be small but sufficiently above the 
background disturbance or ‘free stream turbulence ’ level. Most studies of the 
preferred mode have paid little attention to  these details. 

It is worth mentioning here that because of the background (mostly acoustic) 
disturbance modes, which do not vary (at  least not continuously) with 17,. many 
researchers have reported steps in the f us. @ relation for shear layer or jet 
instability frequency f We think that these steps are spurious and must be due to 
lock-in of the shear-layer instability to  various acoustic modes of the tunnel or 
laboratory environment. This controversy can be conclusively settled by determin- 
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ing, via controlled excitation of jets over a range of frequencies and diameters, the 
frequency f ,  which produces the maximum disturbance growth rate at each U,. I n  
the resulting f ,  us. @ plot such steps should disappear. 

5.2.  Excited elliptic jet 
The distinctly different responses to  excitation of circular and plane jets suggested 
to us interesting technological possibilities for jets of other geometries. Being 
motivated by the fact that  the elliptic configuration is more general than circular and 
plane jets, we have studied excited and unexcited elliptic jets (along with other 
irregular shapes). Because of the effect of azimuthal curvature on self-induction 
(Batchelor 1967 p. 510), hence advection, of different parts of an elliptic vortex loop, 
we expected the evolution of large-scale coherent structures (and their modification 
by controlled excitation) as well as mixing phenomena in the near field of an  elliptic 
jet to be quite different from that of a circular jet. With this in mind incompressible 
elliptic jets of moderate aspect ratios have been studied experimentally employing 
both hot wires and flow-visualization methods (Husain 1984). 

The experiments were carried out using nozzles of aspect ratios 2 : 1 and 4 : 1, both 
having the same exit area at the Reynolds number ReDe( = U, De/v)  = lo5. Here 
D,( =2(ab):, where a and b are the semiaxes of the elliptic cross-section a t  the exit 
plane) is the equivalent diameter (5.08 cm) of the elliptic cross-section a t  nozzle exit 
(contraction ratio 25: 1).  I n  order to focus on the effect of the elliptic geometry alone, 
the spanwise variation of the exit boundary layer was eliminated. The coherent 
structures and their interactions in the elliptic jet near field are found to be 
characterized by ‘preferred’ and ‘stable pairing’ modes as in circular jets, and they 
scale on D,. The corresponding values of the Strouhal number based on D, are also 
the same as in circular jets. However, the pairing process in elliptic jets is somewhat 
different from that in a circular jet. Elliptic large-scale vortical structures are found 
to pair along a short segment in the initial major axis side, while in the initial minor 
axis side the trailing vortex, instead of pairing, rushes through the leading vortex 
and then abruptly breaks down. The large intensity ui is then the induced ‘footprint ’ 
of the partial vortex pairing events. 

Because of curvature-dependent self-advection of vortex filaments (Batchelor 
1967), elliptic vortex rings switch axes. This is also the reason why the cross-section 
of elliptic jets switch axes. The spreading of elliptic jets is quite different from that 
of circular and plane jets. The locations for switchover of elliptic cross-section can 
be drastically altered by controlled excitation, depending on the Strouhal number. 
The equivalent diameter D,(z) of an excited elliptic jet is greater than that of an 
excited circular jet. This increase in the spreading of an elliptic jet is highly 
pronounced under strong forcing a t  the preferred mode, i.e. a t  St,, z 0.4. For 
excitation a t  the preferred mode, the local jet half-width B along the major and minor 
axes are shown in figure 16 (a, b )  for 2: 1 and 4: 1 elliptic jets. Up to x / D ,  = 20, major 
and minor axes switch twice (when excited) in the 2 : l  jet but once in the 4:l jet. 
Also, excitation moves the switchover location upstream. Note that for x/De > 5 ,  
the elliptic cross-section is rotated by 90” between the two jets. The jet spread data 
for 2: 1 and 4: 1 elliptic jets suggest that as the aspect ratio of the nozzle increases, 
the spreading along the minor axis becomes more dominant. [Flow visualization in 
our laboratory has revealed that elliptic vortex rings in an excited elliptic jet can 
bifurcate into two rings, thus producing enhanced mixing.] Both jets showed 
maximum increase in cross-sectional area (due to  excitation) near the location where 
turbulence intensity was maximum ; these area increases for the 2 : 1 and 4 : 1 jets were 
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FIGURE 16. Width of excited (St,, = 0.4, uh/ L$ = 0.15) and unexcited elliptic jet. (a )  2 :  1 elliptic 
jet; ( b ) 4 :  1 elliptic jet. TheequivalentdiameterD, = 5.08 cm; U, = 30 m/s;Re,,( = U,D,/v) = lo5. 
In the initial major axis plane : 0 ,  excited : m, unexcited. In the initial minor axis plane : 0, excited ; 

, unexcited. 

150% and 19O”/b, respectively (figure 17). This maximum increase in the jet 
cross-sectional area a t  the station where the jet is well mixed and turbulence intensity 
is also the maximum confirms the role of excitation in enhancing mixing. This 
enhancement is considerably more than that produced by corresponding excitation 
of a circular jet (also shown in figure 17), even more than that produced by 
self-sustained forcing with a whistler nozzle (see §5.4), thus suggesting interesting 
technological possibilities for excited elliptic jets. Some of these are under investi- 
gation in our laboratory. 

5.3.  Turbulence and noise suppression using excitation 
While controlled excitation typicaIly organizes and enhances instability, experi- 
mentations revealed turbulence suppression (by as much as 80 96)  near the exit of an 
axispmmetric jet under controlled excitation (Zaman & Hussain 1981). We found our 
data puzzling because Crow & Champagne’s (1971) data showed no such suppression; 
it now appears that it is not likely that suppression could be avoided. 

Explorations in a number of axisymmetric and plane jets and plane mixing layers 
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in our laboratory helped us to establish the universal nature of this suppression 
phenomenon and its unique connection with the shear-layer structures (Zaman & 
Hussain 1981). In  circular jets, the suppression occurs over the range 0.75 < x / D  < 8, 
while in the plane mixing layer suppression can be detected as far as " / B e  w 6000. 
The suppression effect produced by controlled excitation is summarized in figure 
18 (u, b )  by plotting the ratio of longitudinal peak fluctuation intensity under 
excitation (u;,) to the unexcited value (ukx). Figure 18 ( a )  shows that the suppression 
is the maximum a t  the Strouhal number St,, z 0.017, a t  a given frequency fp of 
excitation, St,, variation was achieved by changing the jet speed. Figure 18 ( b )  shows 
that U ; ~ / U ~ , ,  measured along a y = constant line in a number of facilities, becomes 
minimum a t  x/6, w 400. Note that other components of turbulence and the Reynolds 
stress also show similar reductions due to  excitation (Zaman & Hussain 1981). It was 
shown that suppression is a straightforward consequence of earlier breakdown, 
induced by the excitation, of the shear-layer vortices which otherwise naturally grow 
to larger sizes and survive for larger x .  Excitation a t  St,, w 0.017 produces a growth 
of the instability wave considerably higher than the natural instability (occurring 
at a lower atee) and thus produces earlier saturation, roll-up, breakdown, and an 
associated inhibition of pairing. The result is a reduction everywhere of fluctuation 
intensities and the Reynolds stress. The suppression discussed here is different from 
the excitation-induced suppression (tail-pipe effect) in a jet resulting from the 
superposition of acoustic and hydrodynamic waves (Rockwell & Schachenmann 
1982). A possible coupling of these two separate effects is interesting and needs to 
be investigated. The turbulence suppression effect has been investigated numerically 
by representing the shear layer by an array of a large number of point vortices, and 
the sensitivity of the suppression effect to the excitation frequency and amplitude 
has been verified (Nallasamy & Hussain 1984). 

Our speculation that the turbulence suppression by controlled excitation would 
probably also cause noise suppression (Zaman & Hussain 1981) was verified by noise 
measurements of excited subsonic jets in a large, quality anechoic chamber. The jets 
were excited in the shear-layer mode by injecting sound through a thin slit along the 
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FIGURE 17.  Percentage increase in jet cross-sectional area of circular and elliptic jets under 
excitation (u;/Ue = 0.15) a t  the preferred mode. J e t  flow state is same as in figure 16. ------, 
2:  1 elliptic jet; ~ , 4: 1 elliptic jet; ---, circular jet. 
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FIQURE 18. Turbulence suppression in shear flows. (a )  Dependence of U L ~ / U ; ~  on St,, measured on 
the centreline of a 2.54 cm jet a t  x / D  = 4 for differentf,; (b )  downstream variation of for 
St, = 0.017, measured along a y = constant line near the lip. x , 18 cm circular jet; 0, 2.54 cm 
circular jet; A, 3.18 cm plane jet; 0, single-stream mixing layer at ITe = 10 m/s; 0,  single-stream 
mixing layer at U, = 20 m/s. 

lip. Far-field measurements revealed that the noise suppression due to excitation was 
broadband. When the spectral peak at the excitation frequency is removed from the 
spectrum, the OASPL resulting from the integration of the area under the spectrum 
then gives a measure of the modification of the sound field. Figure 19 shows that noise 
's suppressed by excitation in the St,, range of 0.014.02. Hot-wire measurements 
in the same facility revealed a broadband turbulence suppression associated with the 
noise suppression ; the spectral range for turbulence suppression agrees with that for 
noise suppression. The far-field sound spectrum is devoid of any sharp peaks at 
subharmonics; thus this broadband suppression is not due to organization of pairing 
(Kibens 1980). It is especially interesting to note that the excitation-induced noise 
suppression is a net suppression even when the excitation sound is included. Further 
details have been recorded by Hasan (1983). 
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FIGURE 19. Aerodynamic noise suppression ror an excited circular jet (4 cm diameter) at Mach 
number = 0.15 as a function of St,,. Data are for different emission angles 4. 0, 4 = 45"; 0 ,  
4 = 60"; A, 4 = 75"; 0, 4 = 90"; 0, 4 = 105". 

5.4. Self-excitation of circular jets 

Earlier studies of plane, circular or elliptic jets were performed with external 
excitation (typically by a loudspeaker) applied directly to the flow or induced by 
driving a settling chamber resonance. However, in technological devices, including 
jet aircraft, prospects for utilization of external excitation seem impractical, and one 
is forced to look for methods of self-excitation. We have studied self-excited air jets 
with whistler nozzles through flow visualization and hot-wire measurements (Hasan 
t Hussain 1982). From our detailed data we conclude that the whistler nozzle 
phenomenon is a coupling of shear-layer tone produced between the lips of the pipe 
nozzle and the collar, and organ-pipe resonance of the pipe nozzle. This coupling is 
accentuated further when the coupling frequency coincides with the preferred mode 
of the issuing jet. Results for a whistler nozzle are shown in figure 20 as a 
representative sample ; the self-excitation corresponds to the preferred mode of the 
jet. The self-excitation clearly produces a large increase in the decay rate of the 
centreline mean velocity U,(x). Figure 20 also shows the u{ (x )  and U J x )  without 
collar, under artificial excitation by a loudspeaker placed in the upstream settling 
chamber. The responses of the pipe nozzle to self-excitation and to artificial 
excitation, as represented by u;(x) ,  show comparable trends. When the pipe nozzle 
jet is forced externally, U,  drops faster with x than when unforced (data identified 
by circles), but this drop is never as large as that for the case of self-excitation. 

There is a prospect of combining the beneficial effects of elliptic geometry and 
self-excitation ; we are investigating elliptic whistler jets. 



348 A .  K. M .  Fade Hussain 

0.20 I I I 

X / D  

FIGURE 20. Self-excitation of a 2.54 cm circular jet showing streamwise variation of centreline mean 
velocity U ,  (open symbols) and centreline turbulence level (solid symbols) for three different flow 
states. The jet exit speed U, = 36 m/s; pipe nozzle length L, = 30.48 cm. L, (collar length in cm), 
f(frequency in Hz), and UL/Ue are: 0 (0.812, 0, 0.007); (0.83, 516, 0.011): 0 (0.99, 504,0.12). 

6. Concluding remarks 
It is the recognition of the preponderant occurrence and dominant dynamical role, 

rather than the discovery, of coherent structures which has injected new momentum 
into turbulence research and has fostered renewed hope for understanding and 
perhaps developing a viable theory of turbulence. The excitement and arguments 
over what coherent structures really are seem to have subsided somewhat - not 
because of apathy, but because the field has matured considerably. Now it is not 
worthwhile to argue when coherent structures were discovered and who should get 
credit, but rather, how can we better understand them and what can we do with 
them ? 

The definition of coherent structures in terms of coherent vorticity may lead to  
formulation of a theory perhaps based on the well-developed concepts of vortex 
dynamics (e.g. Hunt 1985). Unfortunately, the fact that  the structures are intensely 
three-dimensional makes such efforts challenging, even if viscosity could indeed be 
ignored at these large scales. To aid in the sorely needed theoretical developments, 
one needs to know much more about the structures themselves. The overwhelming 
majority of the studies of coherent structures to date have been based on flow 
visualization and not on quantitative data. Motivated by convenience, flow visualiza- 
tion of coherent structures has been performed only a t  low Reynolds numbers. 
But caution is in order against the common temptation to interpret high-Reynolds- 
number flows in terms of observations made a t  low Reynolds numbers. Even a t  low 
Reynolds numbers, flow visualization can be highly misleading because of the high 
Schmidt number of the markers and history integration effect from the point of 
injection. Furthermore, flow visualization in fully turbulent flows is seldom enlight- 
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ening due to the overabundance of (typically confusing) information presented to 
the eye. Thus, flow visualization should be used whenever possible, but only as a 
supplement to quantitative data. 

The crucial need is hard data, but the requirements are forbidding. Classification 
of all advected structures by modes and parameter sizes is necessary before a 
particular subclass can be focused on. Then, to capture the detailed measures of the 
selected structure subclass over its three-dimensional extent and to base the detection 
on coherent vorticity, one must in principle have a large number of vorticity probes 
in a three-dimensional array. The classification is simplified by invoking the existence 
of ‘preferred modes ’, and the measurement challenge is eased by assuming large-scale 
quasi-two dimensionality and using a single transverse rake of cross-wires. Even 
under this restrictive assumption, spanwise contortions, induced by longitudinal ribs, 
are bound to occur, and one must shift structures in the spanwise direction for proper 
alignment before taking ensemble average. While the use of multiple rakes of sensors 
will facilitate acceptance of structures which can then be properly aligned with 
respect to each other, it  seems that optical techniques like scanning two-colour LDA, 
particle displacement velocimetry, pulsed laser holography, or other particle tracking 
methods (such as nuclear magnetic resonance) hold the key to future breakthroughs 
in spatial measurements of time-dependent turbulent flow features, in particular 
coherent structures. The measurement constraints regarding resolution of sensors as 
well as fineness of classification force one to recognize that the coherent structure 
measures we obtain are inherently approximate. 

Supercomputers add a new dimension to our research capability in turbulence and 
in coherent structures. They can complement experimental efforts in numerically 
computing quantities such as vorticity, pressure, enstrophy , helicity , dissipation, 
etc., which are extremely difficult, if not impossible, to measure in the laboratory. 
The current computing power is indeed limiting both in resolution (hence flow 
Reynolds number) and in record length, yet the results are extremely encouraging. 
I expect to see a lot more collaboration between experimentalists and numerical 
analysts, and combined efforts involving direct numerical simulation and multi- 
sensor measurements. In  this connection, turbulent flow topology is an emerging field 
of inquiry, and one of the critical properties to be computed is helicity. The spatial 
separation of dissipation and helicity peaks, though qualitatively demonstrated, is 
still an open question and needs to be established conclusively for fully developed 
turbulent shear flows. 

The question naturally arises: What should one do with all the details of coherent 
structures? One can easily get buried in exploring and documenting the ‘anatomical 
details’ of structures, while losing track of the objective with which one started the 
research or never finding any use for the data. 

Coherent structures, presumably being the tractable part of turbulence, may 
contain most of the essential physics of turbulence. Thus, understanding the 
dynamics of coherent structures is adequate motivation in itself. How the ‘anatomical 
details ’ will be incorporated into a viable theory is not clear, but such a theory must 
be cognizant of the topography and dynamical roles of coherent structures, because 
a turbulence theory formulated without these details will be devoid of the physics 
and cannot be expected to be generic, robust, helpful or even useful. 

The coherent-structure approach to turbulent shear flows should not be viewed as 
merely of conceptual or academic interest ; this approach is of profound practical 
significance for the understanding, design and safety of natural and man-made 
systems involving turbulent flows. The understanding of coherent structures clearly 



350 A .  K .  M .  Fade Hussain 

holds the key to understanding turbulence management and control. Manipulation 
and control of turbulence has already shown evidence of payoffs and holds out hope 
for greater successes in a variety of technological situations involving heat, mass and 
momentum transport, in particular drag, combustion and aerodynamic noise. We 
expect to see in the near future significant thrusts and accomplishments in turbulence 
management via coherent structure manipulation using active and passive controls. 
Even without these technological benefits the study of coherent structures in 
turbulent shear flows is highly interesting and deserves to be pursued vigorously. 
Turbulence may indeed continue to remain nature’s best-kept secret, but we should 
persist in our efforts to unveil these secrets. Studies of coherent structures very much 
represent the spirit and style of G. I. Taylor. 

General papers like this one are bound to reflect the accumulation of many years 
of experience in the laboratory and results of discussions, sometimes debates, with 
many colleagues, both from one’s own laboratory and outside. Such has been my 
experience. I cannot do justice in acknowledging all the fellow researchers, but feel 
specially indebted to: Drs R. W. Metcalfe, K. B. M. Q .  Zaman, S. J .  Kleis, 
L. S. G. Kovasznay, J. Tso, M. Hayakawa, R. Takaki and T. B. Benjamin, for many 
fruitful discussions. Many researchers and peers have helped in sharpening some of 
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Appendix A. Flow field decompositions 
Triple decomposition. In  this formalism, a turbulent shear flow is decomposed into 
time-mean and time-dependent flows, the latter being in turn a superposition of 
coherent perturbation and incoherent turbulence. That is, an instantaneous flow 
variable f is decomposed as 

where j ,  f, and fr are time-mean, coherent and incoherent turbulence components. 
Thus, 

(A 2) ( f>  = f + f c *  f r  = f - < f > l  

( ) means phase average, i.e. ensemble average of all (successive) structures at the 
same age or phase in their evolution. The triple decomposition is similar to that used 
by Reynolds & Hussain (1972) to study the mechanics of waves in turbulent shear 
flows. 

Double decomposition. In  this view, a turbulent shear flow is treated as a 
superposition of coherent structures and incoherent turbulence, i.e. 

f(x, t )  = (f> (x, t )  +fr (x ,  t ) .  (A 3) 

The evolutions of coherent structures and incoherent turbulence and their inter- 
actions can be explored by deriving the continuity, momentum, energy, vorticity and 
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enstrophy equations for the three fields in triple decomposition and the two fields 
in double decomposition; some of these have been discussed by Hussain ( 1 9 8 3 ~ ) .  

The double decomposition does not acknowledge the presence of a ' time-mean ' 
flow and thus is more realistic; however, it does not address the growth of coherent 
motion. The triple decomposition, on the other hand, can provide an explanation 
for the growth of coherent structures by the extraction of kinetic energy from 
the time-mean field. However, such an interpretation is meaningful only when the 
coherent structures are small perturbations of the mean flow. I n  many cases the 
coherent structures are highly dominant. That is, in many cases they are not 
perturbations of the time-mean flow : they are the flow. 

Appendix B. Coherent vorticity dynamics and incoherent turbulence 
Under the triple decomposition of instantaneous velocities and vorticities 

ui(X, t )  = Ui(x)  + uCi(x, t )  + u , ~ ( x ,  2) ; o~(x,  t )  = Q~(x )  + W , ~ ( X ,  t )  + W , . ~ ( X ,  t ) ,  ( B  1) 

The governing equation for coherent vorticity perturbation is 

where D/Dt = a / a t  + U j  a/ax,. Note that summation is not implied by subscripts c 
and r. The significance of each term is fairly obvious. The left-hand side represents 
the change of coherent vorticity in a frame advected with the time-mean velocity 
U ( x ) .  The successive terms on the right-hand side are: augmentation of coherent 
vorticity by stretching by time-mean flow, creation of coherent vorticity by 
stretching of mean vorticity by coherent velocity, viscous diffusion of coherent 
vorticity, coherent vorticity augmentation by stretching by coherent motion, 
advection of coherent vorticity by coherent motion, advection of mean vorticity by 
coherent motion, and organization by the coherent structure of: incoherent vortex 
stretching by incoherent turbulence and transport of incoherent vorticity by 
incoherent turbulence. The discussion can be further particularized and the equation 
simplified for specific flows. For convenience, we will discuss simplifications following 
the double-decomposition approach only. 

The double decomposition is perhaps more appropriate for our physical perception 
of coherent vorticity dynamics. Thus with 

U ( X ,  t )  = ( u )  (x, t )  + ur(x, t )  ; w ( x ,  t )  = ( 0 )  (x, t )  + wr(X, t ) ,  (B 3)  

the equation for coherent vorticity becomes 

(B4) 
D 
- (0) = (W)'V(U) + VV2(0) + (W,'VU,) - (ur*vwr). 
Dt 

Here D/Dt = a/at + (u j )  denotes the material derivative following the coherent 
flow field. It is clear that  coherent vortex stretching, i.e. augmentation of coherent 
vorticity by its stretching by coherent motion, is not the only mechanism for change 
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of coherent vorticity. I n  fact, we will see that this is not even the dominant 
mechanism. The random stretching of random vorticity fluctuations by random 
velocity fluctuations and the random advection of random vorticity by random 
velocity fluctuations can be organized by the coherent structures in such a way as 
to affect the coherent vorticity field itself. 

Simple reasoning can be applied to simplify (B4). If I is the characteristic size of 
the coherent structure and V, is the characteristic velocity (say of the order of the 
mean velocity variation across a shear flow), then 

The ratio of the vortex stretching to  the viscous diffusion terms is of the order of 
the Reynolds number of the coherent structure ( V , l / v ) ,  which is very large, i.e. 
coherent structure dynamics is inviscid, as is expected. Viewed another way, the ratio 
of structure turnover time (7, x l / V c ) ,  which is comparable to structure advection 
time, to the coherent vorticity diffusion time 7d z 12/v, i.e. T , / T ~  z v / (  V, I), is large. 
Thus viscous diffusion is too slow to affect structure dynamics. 

Now, regarding random vorticity and velocity we can expect 

10,l = O(v/A)  and IVu,l = O(v /h ) ,  (B 6) 

where u is a measure of incoherent velocity, and h is the Taylor microscale, i.e. 

so that h 6 1 and u x V,. We can now write 

Clearly, C,, C2 and C, are likely to  be comparable and of the order of unity. (C, can 
be small ; it  is zero in the case of vortex rings or spanwise rolls.) It therefore follows 
that 

039) 
D 
- ( w )  = (w; VU,) - (u, ’ VO,) . 
Dt 

Thus the rate of change of coherent vorticity is a balance of two contributions of the 
incoherent field - the contributions brought about by organization of the incoherent 
field by the coherent structure itself. These two terms have interesting and rather 
different physical interpretations. These interpretations can be easily appreciated in 
a turbulent flow where the coherent structures are two-dimensional. (Even simpler 
is the interpretation when turbulence is considered as a perturbation of a two- 
dimensional time-mean flow ; see Tennekes & Lumley 1974.) If the left-hand side can 
be viewed as a spatial derivative of coherent momentum, the right-hand side can be 
related to  the gradient of incoherent Reynolds stress organized by coherent 
structures. To show this, since the only component of coherent vorticity ( w ) ,  = 
is of interest in the case of plane shear, we have 
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If we neglect gradients of dynamic pressure, (B 10) becomes 

Going back to  (B9), (w;Vu,) can be viewed as contributing to  the loss of coherent 
vorticity by the organization of stretching of incoherent vorticity by incoherent 
turbulence. On the other hand, (ur*Vw,) is the organization by coherent structure 
of the transport of incoherent vorticity by incoherent turbulence ; this transport is 
by the vortex forces u A w which is analogous to  (the half of) the Coriolis force on 
a fluid particle moving with velocity u in a frame rotating with angular velocity w .  
That is, (u;Vw,) represents the essence of the vorticity transport theory of Taylor 
(1935) ; it is clear that the vorticity transport theory ignored the crucial mechanism 
of vortex stretching! 
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